首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This study is devoted to understand the unfolding mechanism of a multidomain protein, human serum albumin (HSA), in absence and presence of the sucrose by steady‐state and time‐resolved fluorescence spectroscopy with domain specific marker molecules and is further being substantiated by molecular dynamics (MD) simulation. In water, the domain III of HSA found to unfold first followed by domains I and II as the concentration of GnHCl is increased in the medium. The sequential unfolding behavior of different domains of HSA remains same in presence of sucrose; however, a higher GnHCl concentration is required for unfolding, suggesting stabilizing effect of sucrose on HSA. Domain I is found to be most stabilized by sucrose. The stabilization of domain II is somewhat similar to domain I, but the effect of sucrose on domain III is found to be very small. MD simulation also predicted a similar behavior of sucrose on HSA. The stabilizing effect of sucrose is explained in terms of the entrapment of water molecules in between HSA surface and sucrose layer as well as direct interaction between HSA and sucrose.  相似文献   

2.
Site specific spectroscopic techniques and differential scanning calorimetry were used to study human serum albumin (HSA) in the absence and in the presence of membranes composed of dipalmitoylphosphatidylcholine (DPPC) and poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Electron spin resonance (ESR) of a maleimide spin-label (5-MSL) covalently bound to the free sulfhydryl group at the unique cystein Cys-34 in domain I, intrinsic fluorescence of the single tryptophan Trp-214 in domain II, and extrinsic fluorescence of p-nitrophenyl anthranilate conjugated with tyrosine Tyr-411 in domain III were employed to study HSA dispersions with or without polymer-grafted membranes. On adsorbing at the DPPC membrane surfaces, domain I assumes a more loosened conformation and partitioning of the spin-labelled protein between the aqueous phase and the interfacial region of lipid membranes is observed by ESR. Domain II and III undergo a local structural arrangement which leads Trp-214 and Tyr-411 to come closer and causes intrinsic fluorescence quenching. The influence of DPPC bilayers on HSA is characterized both by a decrease of the thermal unfolding enthalpy and by a slight increase of the transition temperature, T (t), of the protein. The lipid induced effects on HSA are progressively reduced on increasing the amounts of PEG:2000-DPPE mixed with DPPC from the mushroom regime to the brush regime. Primary protein adsorption at the lipid surfaces is abolished at 1 mol% of the polymer-lipid, whereas the secondary protein adsorption at the polymer-brush leads to a further increase of both transition enthalpy and T (t) relative to the case of aqueous dispersions of HSA alone.  相似文献   

3.
Steady-state and time-resolved fluorescence spectroscopy was used to follow the local and global changes in structure and dynamics during chemical and thermal denaturation of unlabeled human serum albumin (HSA) and HSA with an acrylodan moiety bound to Cys34. Acrylodan fluorescence was monitored to obtain information about unfolding processes in domain I, and the emission of the Trp residue at position 214 was used to examine domain II. In addition, Trp-to-acrylodan resonance energy transfer was examined to probe interdomain spatial relationships during unfolding. Increasing the temperature to less than 50 degrees C or adding less than 1.0 M GdHCl resulted in an initial, reversible separation of domains I and II. Denaturation by heating to 70 degrees C or by adding 2.0 M GdHCl resulted in irreversible unfolding of domain II. Further denaturation of HSA by either method resulted in irreversible unfolding of domain I. These results clearly demonstrate that HSA unfolds by a pathway involving at least three distinct steps. The low detection limits and high information content of dual probe fluorescence should allow this technique to be used to study the unfolding behavior of entrapped or immobilized HSA.  相似文献   

4.
Krishnakumar SS  Panda D 《Biochemistry》2002,41(23):7443-7452
Prodan (6-propionyl-2-(dimethylamino)-naphthalene), a competitive inhibitor of warfarin binding to human serum albumin (HSA) at drug site I, was used to determine the inter- and intradomain distances of HSA. The fluorescence resonance energy transfer (FRET) distances between prodan and Trp-214, prodan and 7-(diethyl amino)-4-methylcoumarin 3-maleimide (CM)-modified Cys-34, and Trp-214 and CM-Cys-34 were determined to be 25.5 +/- 0.5 A, 33.1 +/- 0.8 A, and 32.4 +/- 1 A, respectively. FRET analysis showed that low concentration of palmitic acid (5 microM) increased the interdomain distance between the Trp-214 in domain II and CM-Cys-34 in domain I by approximately 5 A without perturbing the secondary structure of HSA and the immediate environment of Trp-214. Palmitic acid (5 microM) increased the prodan fluorescence by increasing the quantum yield of bound prodan without altering the tryptophan environment. However, palmitic acid (>10 microM) decreased the prodan fluorescence and increased the tryptophan fluorescence. Our results indicate that the high affinity palmitic acid binding site is located at the interface of domains I and II. On the basis of our measurements, a schematic model representing the drug site-1, Trp-214, and Cys-34 along with the palmitic acid sites has been constructed. In addition, prodan fluorescence, FRET, and ligand binding were used to monitor guanidine hydrochloride-induced denaturation of HSA. An analysis of the equilibrium unfolding data suggests that HSA undergoes a two-state unfolding transition with no detectable intermediate. However, kinetic analysis using multiple probes and thermal denaturation studies showed that the unfolding of the prodan site in HSA preceded the unfolding of tryptophan environment. In addition, the separation of domain I and II occurred before the global unfolding of the protein. The data support the idea that HSA loses its structure incrementally during its unfolding.  相似文献   

5.
Muzammil S  Kumar Y  Tayyab S 《Proteins》2000,40(1):29-38
The unfolding of human serum albumin (HSA), a multidomain protein, by urea was followed by far-UV circular dichroism (CD), intrinsic fluorescence, and ANS fluorescence measurements. The urea-induced transition, which otherwise was a two-step process with a stable intermediate at around 4.8 M urea concentration as monitored by far-UV CD and intrinsic fluorescence, underwent a single-step cooperative transition in the presence of 1.0 M KCl. The free energy of stabilization (DeltaDelta G(H2O)D) in the presence of 1 M KCl was found to be 1,090 and 1,200 cal/mol as determined by CD and fluorescence, respectively.The salt stabilization occurred in the first transition (0-5.0 M urea), which corresponded to the formation of intermediate (I) state from the native (N) state, whereas the second transition, corresponding to the unfolding of I state to denatured (D) state, remained unaffected. Urea denaturation of HSA as monitored by tryptophan fluorescence of the lone tryptophan residue (Trp(214)) residing in domain II of the protein, followed a single-step transition suggesting that domain(s) I and/or III is (are) involved in the intermediate formation. This was also confirmed by the acrylamide quenching of tryptophan fluorescence at 5 M urea, which exhibited little change in the value of Stern-Volmer constant. ANS fluorescence data also showed single-step transition reflecting the absence of accumulation of hydrophobic patches. The stabilizing potential of various salts studied by far-UV CD and intrinsic fluorescence was found to follow the order: NaClO(4) > NaSCN >Na(2)SO(4) >KBr >KCl >KF. A comparison of the effects of various potassium salts revealed that anions were chiefly responsible in stabilizing HSA. The above series was found similar to the electroselectivity series of anions towards the anion-exchange resins and reverse of the Hofmeister series, suggesting that preferential binding of anions to HSA rather than hydration, was primarily responsible for stabilization. Further, single-step transition observed with GdnHCl can be ascribed to its ionic character as the free energy change associated with urea denaturation in the presence of 1.0 M KCl (5,980 cal/mol) was similar to that obtained with GdnHCl (5,870 cal/mol).  相似文献   

6.
The human serum albumin is known to undergo N <==> F (neutral to fast moving) isomerization between pH 7 and 3.5. The N < ==> F isomerization involves unfolding and separation of domain III from rest of the molecule. The urea denaturation of N isomer of HSA shows two step three state transition with accumulation of an intermediate state around 4.8-5.2 M urea concentration. While urea induced unfolding transition of F isomer of HSA does not show the intermediate state observed during unfolding of N isomer. Therefore, it provides direct evidence that the formation of intermediate in the unfolding transition of HSA involves unfolding of domain III. Although urea induced unfolding of F isomer of HSA appears to be an one step process, but no coincidence between the equilibrium transitions monitored by tryptophanyl fluorescence, tyrosyl fluorescence, far-UV CD and near-UV CD spectroscopic techniques provides decisive evidence that unfolding of F isomer of HSA is not a two state process. An intermediate state that retained significant amount of secondary structure but no tertiary structure has been identified (around 4.4 M urea) in the unfolding pathway of F isomer. The emission of Trp-214 (located in domain II) and its mode of quenching by acrylamide and binding of chloroform indicate that unfolding of F isomer start from domain II (from 0.4 M urea). But at higher urea concentration (above 1.6 M) both the domain unfold simultaneously and the protein acquire random coil structure around 8.0 M urea. Further much higher KSV of NATA (17.2) than completely denatured F isomer (5.45) of HSA (8.0 M urea) suggests the existence of residual tertiary contacts within local regions in random coil conformation (probably around lone Trp-214).  相似文献   

7.
Alkaline pH induced conformational changes in different domains of bovine serum albumin were studied by using domain specific ligands: chloroform, bilirubin and diazepam for domains I, II and III respectively. The effect of alkaline pH on the secondary structure of BSA was monitored by far-UV CD in the range 250 nm to 200 nm. The pH profiles of BSA in the alkaline region showed a two-step change, one corresponding to N<-->B transition (pH 7.5 to 9.0) and the other to B --> U (pH 11.0 to 13.5). Binding of chloroform decreased continuously on increasing pH, whereas binding of diazepam, remained unchanged up to pH 9 and decreased thereafter. In contrast, binding of bilirubin gradually increased up to pH 11.0 and decreased thereafter reaching a value similar to one obtained with native BSA at pH 11.5. Above pH 11.5, bilirubin binding decreased and was abolished completely at pH 12.5. In the pH region 7.5 to 11.0, a continuous decrease in chloroform binding (pH 7.5 to 9.5) and a late decrease in diazepam binding (pH 9.5 to 11.0) suggested major loss of native conformation of domain I followed by domain III during alkaline induced unfolding of BSA. However, a significant increase in bilirubin binding showed a favorable conformational rearrangement in domain II in this pH region (pH7.5 to 11.0). Further, a nearly complete abolishment of bilirubin binding to BSA and significant loss of secondary structure around pH 12.5 indicated that domain II was more resistant to alkaline pH and unfolds only at extreme alkalinity. Taken together, these data suggest that unfolding of three domains of BSA follow the following order of susceptibility towards alkaline denaturation of BSA domain I>domain III>domain II.  相似文献   

8.
The insecticidal crystal (Cry) proteins produced by Bacillus thuringiensis undergo several conformational changes from crystal inclusion protoxins to membrane-inserted channels in the midgut epithelial cells of the target insect. Here we analyzed the stability of the different forms of Cry1Ab toxin, monomeric toxin, pre-pore complex, and membrane-inserted channel, after urea and thermal denaturation by monitoring intrinsic tryptophan fluorescence of the protein and 1-anilinonaphthalene-8-sulfonic acid binding to partially unfolded proteins. Our results showed that flexibility of the monomeric toxin was dramatically enhanced upon oligomerization and was even further increased by insertion of the pre-pore into the membrane as shown by the lower concentration of chaotropic agents needed to achieve unfolding of the oligomeric species. The flexibility of the toxin structures is further increased by alkaline pH. We found that the monomer-monomer interaction in the pre-pore is highly stable because urea promotes oligomer denaturation without disassembly. Partial unfolding and limited proteolysis studies demonstrated that domains II and III were less stable and unfold first, followed by unfolding of the most stable domain I, and also that domain I is involved in monomer-monomer interaction. The thermal-induced unfolding and analysis of energy transfer from Trp residues to bound 1-anilinonaphthalene-8-sulfonic acid dye showed that in the membrane-inserted pore domains II and III are particularly sensitive to heat denaturation, in contrast to domain I, suggesting that only domain I may be inserted into the membrane. Finally, the insertion into the membrane of the oligomeric pre-pore structure was not affected by pH. However, a looser conformation of the membrane-inserted domain I induced by neutral or alkaline pH correlates with active channel formation. Our studies suggest for the first time that a more flexible conformation of Cry toxin could be necessary for membrane insertion, and this flexible structure is induced by toxin oligomerization. Finally the alkaline pH found in the midgut lumen of lepidopteran insects could increase the flexibility of membrane-inserted domain I necessary for pore formation.  相似文献   

9.
Urea-induced unfolding of bovine serum albumin and one of its fragments containing domain II + III has been studied by difference spectral and fluorescence emission measurements. The unfolding-refolding curves of both the proteins showed the presence of at least one stable intermediate when the transition was monitored at 288 nm. The presence of the intermediate was not detectable at 293 nm where only tryptophan contributed towards the protein absorption. However, both the proteins did show the presence of intermediate when the denaturation was monitored fluorometrically. Since domain III of the albumin is devoid of tryptophan, it is concluded that the formation of intermediate in the unfolding-refolding transition of serum albumin involves (i) unfolding of domain III, (ii) minor structural transformations in domain II, and/or (iii) the separation of the sub-domains of domain III from each other.  相似文献   

10.
The ibuprofen primary binding site FA3-FA4 is located in domain III of human serum albumin (HSA), the secondary clefts FA2 and FA6 being sited in domains I and II. Here, the thermodynamics of ibuprofen binding to recombinant Asp1-Glu382 truncated HSA (tHSA)-heme-Fe(III) and nitrosylated tHSA-heme-Fe(II), encompassing domains I and II only, is reported. Moreover, the allosteric effect of ibuprofen on the kinetics of tHSA-heme-Fe(III)-mediated peroxynitrite isomerization and nitrosylated tHSA-heme-Fe(II) denitrosylation has been investigated. The present data indicate, for the first time, that the allosteric modulation of tHSA-heme and HSA-heme reactivity by ibuprofen depends mainly on drug binding to the FA2 and FA6 secondary sites rather than drug association with the FA3-FA4 primary cleft. Thus, tHSA is a valuable model with which to investigate the allosteric linkage between the heme cleft FA1 and the ligand-binding pockets FA2 and FA6, all located in domains I and II of (t)HSA.  相似文献   

11.
In our earlier communication on urea denaturation of bovine serum albumin (BSA), we showed significant unfolding of domain III along with domain I prior to intermediate formation around 4.6-5.2 M urea based on the binding results of domain specific ligands:chloroform, bilirubin and diazepam for domains I, II and III, respectively. Here, we present our results on the salt-induced refolding of the two partially folded states of BSA obtained at 4.5 M urea and at pH 3.5, respectively. Both these states were characterized by significant unfolding of both domains I and III as indicated by decreased binding of chloroform and diazepam, respectively. Salt-induced stabilization of partially folded states of BSA was accompanied by nearly complete refolding of both domains I and III as the binding isotherms of chloroform and diazepam obtained in presence of approximately 1.0 M KCl were nearly identical to that obtained with native BSA at pH 7.4. From these observations, it can be concluded that the anion binding sites on serum albumin are not only confined to domain III (C-terminal region) but few sites are also present on domain I (or N-terminal region) of the protein.  相似文献   

12.
The urea and heat-induced unfolding-refolding behaviours of chicken egg white ovomucoid and its four fragments representing domains I, II + III, I + II and III were systematically investigated in 0.06 M sodium phosphate buffer (pH 7.0) by difference spectral measurements. The effect of temperature on ovomucoid and its fragments was also studied in 0.05 M sodium acetate buffer (pH 5.0) and in presence of 2 M urea at pH 7.0. Intrinsic viscosity data showed that ovomucoid and its different fragments did not lose any significant amount of their structure under mild acidic conditions (pH 4.6). Difference spectral results showed extensive disruption of the native structure by urea or temperature. Isothermal transitions showed single-step for domain I, domain I + II and domain III, and two-step having one stable intermediate, for ovomucoid and its fragment representing domain II + III. However, the presence of intermediate was not detected when the transitions were studied with temperature at pH 7.0. Strikingly, the single-step thermal transitions of ovomucoid and its fragment representing domain II + III, became two-step when measured either at pH 5.0 or in presence of 2 M urea at pH 7.0. Analysis of the equilibrium data on urea and heat denaturation showed that the second transition observed with ovomucoid or domain II + III represent the unfolding of domain III. The kinetic results of ovomucoid and its fragments indicate that the protein unfolds with three kinetic phases. A comparison of three rate constants for the unfolding of intact ovomucoid with that of its various fragments revealed that domain I, II and III of the protein correspond to the three kinetic phases having rate constants 0.456, 0.120 and 0.054 min-1, respectively. These data have led us to conclude: (i) the unusual stability of ovomucoid towards various denaturants, including temperature, is due to its domain III, (ii) initiation of the folding of the ovomucoid molecule starts from its NH2-terminal region which probably provides the nucleation site for the formation of the subsequent structure and (iii) domains I and II have greater mutual recognition between them as compared to the recognition either of them have with domain III.  相似文献   

13.
Human serum albumin (HSA) interacts with a vast array of chemically diverse ligands at specific binding sites. To pinpoint the essential structural elements for the formation of the warfarin binding site on human serum albumin, a defined set of five recombinant proteins comprising combinations of domains and/or subdomains of the N-terminal part were prepared and characterized by biochemical standard procedures, tryptophanyl fluorescence, and circular dichroic measurements, indicating well-preserved secondary and tertiary structures. Affinity constants for binding to warfarin were estimated by fluorescence titration experiments and found to be highest for HSA-DOM I-II and HSA, followed by HSA-DOM IB-II, HSA-DOM II, and HSA-DOM I-IIA. In addition, ultraviolet difference spectroscopy and induced circular dichroism experiments were carried out to get an in depth understanding of the binding mechanism of warfarin to the fragments as stand-alone proteins. This systematic study indicates that the primary warfarin binding site is centered in subdomain IIA with indispensable structural contributions of subdomain IIB and domain I, while domain III is not involved in this binding site, underlining the great potential that lies in the use of combinations of recombinant fragments for the study and accurate localization of ligand binding sites on HSA.  相似文献   

14.
Human serum albumin (HSA) is a protein of 66.5 kDa that is composed of three homologous domains, each of which displays specific structural and functional characteristics. HSA is known to undergo different pH-dependent structural transitions, the N-F and F-E transitions in the acid pH region and the N-B transition at slightly alkaline pH. In order to elucidate the structural behavior of the recombinant HSA domains as stand-alone proteins and to investigate the molecular and structural origins of the pH-induced conformational changes of the intact molecule, we have employed fluorescence and circular dichroic methods. Here we provide evidence that the loosening of the HSA structure in the N-F transition takes place primarily in HSA-DOM III and that HSA-DOM I undergoes a structural rearrangement with only minor changes in secondary structure, whereas HSA-DOM II transforms to a molten globule-like state as the pH is reduced. In the pH region of the N-B transition of HSA, HSA-DOM I and HSA-DOM II experience a tertiary structural isomerization, whereas with HSA-DOM III no alterations in tertiary structure are observed, as judged from near-UV CD and fluorescence measurements.  相似文献   

15.
Terbium, a trivalent lanthanide, effectively substituted for Ca2+ in calmodulin as judged by several criteria: intrinsic fluorescence spectra, altered mobilities on polyacrylamide gel electrophoresis, formation of a stable complex with troponin I or calcineurin, and stimulation of phosphodiesterase. Calmodulin harbors four Ca2+ binding domains; domains I and II contain no tyrosine, whereas domains III and IV each have one tyrosine. The binding of Tb3+ to calmodulin was followed by the increase of Tb3+ fluorescence at 545 nm upon binding to calmodulin. This fluorescence was elicited either by exciting Tb3+ directly at 222 nm or by exciting the calmodulin tyrosine at 280 nm with resulting energy transfer from tyrosine to Tb3+. Fluorescence generated by direct excitation measures binding of Tb3+ to any of the Ca2+ binding domains, whereas energy transfer through indirect excitation is effective only when Tb3+ is within 5 A of tyrosine, indicating that Tb3+ necessarily occupies a Ca2+ binding domain that contains tyrosine. A judicious use of the direct and indirect excitation could reveal the sequence of fill of the binding domains. Our results suggest these domains are filled in the following sequence: 1) domain I or II; 2) domains III and IV; and 3) domain II or I that has not been filled initially.  相似文献   

16.
The changes in the far-UV CD signal, intrinsic tryptophan fluorescence and bilirubin absorbance showed that the guanidine hydrochloride (GdnHCl)-induced unfolding of a multidomain protein, human serum albumin (HSA), followed a two-state process. However, using environment sensitive Nile red fluorescence, the unfolding and folding pathways of HSA were found to follow a three-state process and an intermediate was detected in the range 0.25-1.5 m GdnHCl. The intermediate state displayed 45% higher fluorescence intensity than that of the native state. The increase in the Nile red fluorescence was found to be due to an increase in the quantum yield of the HSA-bound Nile red. Low concentrations of GdnHCl neither altered the binding affinity of Nile red to HSA nor induced the aggregation of HSA. In addition, the secondary structure of HSA was not perturbed during the first unfolding transition (<1.5 m GdnHCl); however, the secondary structure was completely lost during the second transition. The data together showed that the half maximal loss of the tertiary structure occurred at a lower GdnHCl concentration than the loss of the secondary structure. Further kinetic studies of the refolding process of HSA using multiple spectroscopic techniques showed that the folding occurred in two phases, a burst phase followed by a slow phase. An intermediate with native-like secondary structure but only a partial tertiary structure was found to form in the burst phase of refolding. Then, the intermediate slowly folded into the native state. An analysis of the refolding data suggested that the folding of HSA could be best explained by the framework model.  相似文献   

17.
We induced the denaturation of unlabeled human serum albumin (HSA) and of similar albumin labeled with acrylodan (6-acryloyl-2-dimethylamino naphthalene) with urea and studied the transition profiles using circular dichroism and fluorescence spectroscopy. The circular dichroism spectra for both albumin preparations resulted in the same curves, thus indicating that labeling with acrylodan does not perturb the conformation of HSA. Our results indicate that the denaturation of both albumin preparations takes place at a single, two-state transition with midpoint at about 6 M urea, due to the unfolding of its domain II. It is important to point out that even at 8 M urea, some residual structure remains in the HSA. Great changes in the fluorescence of the dye bound to the protein were observed by addition of solid guanidine hydrochloride to the protein labeled with acrylodan dissolved in 8 M urea, indicating that domain I of this protein was not denatured by urea.  相似文献   

18.
In order to understand the mechanism by which advanced glycation endproducts (AGEs) elicit oxidative stress, macrophage-like RAW264.7 cells were exposed to various AGE-albumins, and oxidant stress was estimated from the fluorescence of oxidized dichlorofluorescein using the microtiter plate assay. Strongest fluorescence was observed with methylglyoxal modified albumin (MGO-BSA) compared with native albumin. Similar effects that were prevented by arginine coincubation were seen with phenylglyoxal-BSA. MGO-BSA had increased affinity for Cu(2+) and Ca(2+), but was conformationally similar to native albumin. Surprisingly, the mere addition of unmodified albumin to cells suppressed the fluorescence of oxidized DCF. While, several site-directed mutants of human serum albumin (HSA), including C34S and recombinant domains II and III retained fluorescence suppressing activity, proteolytic digests, recombinant domain I, and several nonalbumin proteins failed to suppress. Kinetic and ANS binding studies suggested albumin quenches DCF fluorescence by binding to hydrophobic pockets in domains II and III and that MGO-BSA is less hydrophobic than BSA. Finally, BSA also prevented H(2)O(2) catalyzed DCF fluorescence more potently than MGO-BSA. These studies reveal important caveats of the widely used dichlorofluorescein assay and suggest methods other than the microtiter plate assay are needed to accurately assess cellular oxidant stress in presence of native or modified albumin.  相似文献   

19.
In an attempt to systematically dissect the ligand binding properties of human serum albumin (HSA), the gene segments encoding each of its three domains were defined based on their conserved homologous structural motifs and separately cloned into a secretion vector for Pichia pastoris. We were able to establish a generally applicable purification protocol based on Cibacron Blue affinity chromatography, suggesting that each of the three domains carries a binding site specific for this ligand. Proteins were characterized by SDS-polyacrylamide gel electrophoresis, isoelectric focusing, gel filtration, N-terminal sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, as well as near- and far-UV CD. In addition to the affinity chromatography ligand Cibacron Blue, binding properties toward hemin, warfarin, and diazepam, each of which represents a standard ligand for HSA, respectively, were investigated by the measurement of induced circular dichroism. Clear experimental evidence is provided here for the location of the primary hemin binding site to be on domain I of HSA, and for the primary diazepam binding site to be on domain III. Further, secondary binding sites were found for hemin to be located on domains II and III, and for diazepam on domain I. The warfarin binding site was located primarily on domain II, while on domain I, a secondary binding site and/or parts of the primary binding site were found.  相似文献   

20.
This study was undertaken to investigate the influence of fatty acid binding on the unfolding of HSA and how the fatty acid molecules can influence and/or compete with other ligand molecules bound to the protein. The equilibrium unfolding of fatted and fatty acid free HSA was measured by overlapping of unfolding transition curves monitored by different probes for secondary and tertiary structure and determining changes in free energy of unfolding. Proteins stability was studied by fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism techniques. We have suggested a "molten globule" like intermediate state of HSA at a fairly high concentration of GnHCl (3.2 for fatty acid free and 3.6 for fatted). The free energy of stabilization (DeltaG(D)(H2O)) in the presence of fatty acid was found to be 900 cal mol(-1). We also analyze the effects of fatty acid on binding of ligands using spectroscopic technique and reported the equilibrium constants and free energies obtained from the binding and unfolding experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号