首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we show that in vitro xanthosine does not enter any of the pathways known to salvage the other three main natural purine nucleosides: guanosine; inosine; and adenosine. In rat brain extracts and in intact LoVo cells, xanthosine is salvaged to XMP via the phosphotransferase activity of cytosolic 5'-nucleotidase. IMP is the preferred phosphate donor (IMP + xanthosine --> XMP + inosine). XMP is not further phosphorylated. However, in the presence of glutamine, it is readily converted to guanyl compounds. Thus, phosphorylation of xanthosine by cytosolic 5'-nucleotidase circumvents the activity of IMP dehydrogenase, a rate-limiting enzyme, catalyzing the NAD(+)-dependent conversion of IMP to XMP at the branch point of de novo nucleotide synthesis, thus leading to the generation of guanine nucleotides. Mycophenolic acid, an inhibitor of IMP dehydrogenase, inhibits the guanyl compound synthesis via the IMP dehydrogenase pathway but has no effect on the cytosolic 5'-nucleotidase pathway of guanine nucleotides synthesis. We propose that the latter pathway might contribute to the reversal of the in vitro antiproliferative effect exerted by IMP dehydrogenase inhibitors routinely seen with repletion of the guanine nucleotide pools.  相似文献   

2.
The nucleoside analog acyclovir (9-[2-hydroxy-ethoxy)methyl]guanine or acycloguanosine; ACV) inhibited the in vitro transformation of NIH 3T3 cells by Abelson murine leukemia virus and the proliferation of abl- and bcr-abl-transformed hemopoietic murine cell lines. This effect is selective since ACV at the same concentration had no effect on the src and Ha-ras transformation of NIH 3T3 cells or on the proliferation of hemopoietic cells transformed by those oncogenes. The inhibitory effect on proliferation of abl-transformed cells correlated with the extent of ACV triphosphate formation and incorporation into cellular DNA that was greater than that in normal or other oncogene-transformed cells. The increased ACV triphosphate formation might be due to a higher level of 5'-nucleotidase, the enzyme responsible for trace levels of ACV phosphorylation in uninfected cells.  相似文献   

3.
During contractions, when the rate of ATP hydrolysis exceeds that of ADP phosphorylation, inosine 5'-monophosphate (IMP) accumulates in skeletal muscle. If the cellular energy balance is not promptly restored, subsequent purine degradation to inosine via 5'-nucleotidase can occur, a process that is most robust in the slow-twitch red, as compared to fast-twitch, skeletal muscle. We measured the distribution of 5'-nucleotidase activity among membrane-bound and soluble fractions of fiber specific skeletal muscle sections and found most (80-90%) of the total 5'-nucleotidase activity to be membrane-bound. The 5' IMP nucleotidase activity present in the soluble fraction of muscle extracts differs among fiber types with slow-twitch red > fast-twitch red > mixed fibered > fast-twitch white. Experiments testing the substrate dependence of IMP and AMP dephosphorylation by the soluble fraction of muscle extracts revealed a lower Km toward IMP (approximately 0.7-1.5 mM) than AMP (1.9-2.8 mM). Among skeletal muscle fiber sections, the soluble 5'-nucleotidase activity present in slow-twitch red muscle extracts had the highest substrate affinity, the highest activity with IMP as substrate, and an estimated catalytic efficiency (Vmax/Km) that was > 3-fold higher than calculated for fast-twitch muscle extracts. This is likely due to the Mg2+ dependent cytosolic 5' IMP nucleotidase isoform, since immunoprecipitation experiments revealed 3-4 times more activity in slow-twitch red than in fast-twitch red or fast-twitch white fibers, respectively. These finding are consistent with the previously recognized in vivo pattern of nucleoside formation by muscle where the soleus demonstrated extensive inosine formation at a much lower IMP content than fast-twitch red or fast-twitch white muscle fiber sections.  相似文献   

4.
The 5'-phosphomonoesterase activity of 5'-nucleotidase (EC 3.1.3.5) and alkaline phosphatase (EC 3.1.3.5) participates in the catabolism of purine ribonucleotides to uric acid in humans. Initial velocity studies of 5'-nucleotidase suggest a sequential mechanism of interaction between AMP nad MgCl2, with a Km of 14 and 3 muM, respectively. With product inhibition studies the apparent Ki's for adenosine, inosine, cytidine, and inorganic phosphate were 0.4, 3.0, 5.0, and 42 mM, respectively. A large number of nucleoside mono-, di-, and tri-phosphate compounds were inhibitors of the enzyme. Allopurinol ribonucleotide, ADP, or ATP were competitive inhititors when AMP was the substrate, with a Ki slope of 120 muM. The phosphomonoesterase activity of human placental microsomal alkaline phosphatase had a pH optimum of 10.0 and had only 18% of maximum activity at pH 7.4. Substrates and inhibitors included almost any phosphorylated compound. The Km for AMP was 0.4 mM and the apparent Ki for Pi was 0.6 mM. Activity was increased only 19% by 5 mM MgCl2. These observations suggest that 5'-nucleotidase and alkaline phosphatase may be inhibited by ATP and Pi, respectively, under normal intracellular conditions, and that AMP may be preferentially hydrolyzed by 5'-nucleotidase.  相似文献   

5.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hyposanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5'-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5'-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed within 10%. Liver cell sap had the highest activities of all purine enzymes except for 5'-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erhthrocytes were devoid of 5'-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue. Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5'-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control od adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte greater than liver greater than fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

6.
The kinetic properties of highly purified human placental cytoplasmic 5'-nucleotidase were investigated. Initial velocity studies gave Michaelis constants for AMP, IMP, and CMP of 18, 30, and 2.2 microM, respectively. The enzyme shows the following relative Vmax values: CMP greater than UMP greater than dUMP greater than GMP greater than AMP greater than dCMP greater than IMP. The activity was magnesium-dependent, and this cation binds sequentially with a Km of 14 microM for AMP and an apparent Km of 6 mM for magnesium. A large variety of purine, pyrimidine, and pyridine compounds exert an inhibitory effect on enzyme activity. IMP, GMP, and NADH produce almost 100% inhibition at 1.0 mM. Nucleoside di- and triphosphates are potent inhibitors. ATP and ADP are competitive inhibitors with respect to AMP and IMP as substrates with Ki values of 100 and 15 microM, respectively. Inorganic phosphate is a noncompetitive inhibitor with Ki values of 19 and 43 mM. Nucleosides and other compounds studied produce only a modest decrease of enzyme activity at 1 mM. Our findings suggest that the enzyme is regulated under physiological conditions by the concentrations of magnesium, nucleoside 5'-monophosphates, and nucleoside di- and triphosphates. The nucleotide pool concentration regulates the enzyme possibly by a mechanism of heterogeneous metabolic pool inhibition. These properties of human placental cytoplasmic 5'-nucleotidase may be related to the control of nucleotide degradation in vivo.  相似文献   

7.
Some properties of human erythrocyte pyrimidine 5'-nucleotidase   总被引:1,自引:0,他引:1  
In haemolysates human erythrocyte pyrimidine 5'-nucleotidase had a single optimum at pH 7.2 with CMP and 6.75 with UMP as substrate. The purified enzyme showed two pH optima at pH 6.25 and 7.2 with UMP as substrate. The enzyme was inhibited by both its products - inorganic phosphate and pyrimidine nucleoside. The inhibition by inorganic phosphate appeared to be non-competitive with Ki = 1.5 mM. Contrary to previous reports adenosine and inosine did not inhibit the enzyme.  相似文献   

8.
A human placental soluble "high Km" 5'-nucleotidase has been separated from "low Km" 5'-nucleotidase and nonspecific phosphatase by AMP-Sepharose affinity chromatography. The enzyme was purified 8000-fold to a specific activity of 25.6 mumol/min/mg. The subunit molecular mass is 53 kDa, and the native molecular mass is 210 kDa, suggesting a tetrameric structure. Soluble high Km 5'-nucleotidase is most active with IMP and GMP and their deoxy derivatives. IMP is hydrolyzed 15 times faster than AMP. The enzyme has a virtually absolute requirement for magnesium ions and is regulated by them. Purine nucleoside 5'-triphosphates strongly activate the enzyme with the potency order dATP greater than ATP greater than GTP. 2,3-Diphosphoglycerate activates the enzyme as potently as ATP. Three millimolar ATP decreased the Km for IMP from 0.33 to 0.09 mM and increased the Vmax 12-fold. ATP activation was modified by the IMP concentration. At 20 microM IMP the ATP-dependent activation curve was sigmoidal, while at 2 mM IMP it was hyperbolic. The A0.5 values for ATP were 2.26 and 0.70 mM, and the relative maximal velocities were 32.9 and 126.0 nmol/min, respectively. Inorganic phosphate shifts the hyperbolic substrate velocity relationship for IMP to a sigmoidal one. With physiological concentrations of cofactors (3 mM ATP, 1-4 mM Pi, 150 mM KCl) at pH 7.4, the enzyme is 25-35 times more active toward 100 microM IMP than 100 microM AMP. These data show that: (a) soluble human placental high Km 5'-nucleotidase coexists in human placenta with the low Km enzyme; (b) under physiological conditions the enzyme favors the hydrolysis of IMP and is critically regulated by IMP, ATP, and Pi levels; and (c) kinetic properties of ATP and IMP are each modified by the other compound suggesting complex interaction of the associated binding sites.  相似文献   

9.
Cytosolic 5'-nucleotidase has been implicated in the phosphorylation of certain nucleosides of therapeutic interest. In vitro, IMP and GMP serve as the optimal phosphate donors for this nucleoside phosphotransferase reaction. Existing assays for nucleoside phosphorylation effected by 5'-nucleotidase require a radiolabeled nucleoside as the phosphate acceptor and separation of the substrate-nucleoside from product-nucleotide has been accomplished either by a filter binding method or HPLC. However, detection of the phosphorylation of unlabeled nucleoside by HPLC is difficult since the ultraviolet absorbance of the phosphate donor, IMP, frequently obscures the absorbance of newly formed nucleotide. The use of ribavirin 5'-phosphate (RMP, 1,2,4-triazole-3-carboxamide riboside 5-monophosphate) as the phosphate donor obviates this difficulty since this triazole heterocycle does not significantly absorb at the wavelengths used to detect most nucleoside analogs. Using this procedure, a 5'-nucleotidase activity from the 100,000 x g supernatant fraction of human T-lymphoblasts deficient in adenosine kinase, hypoxanthine-guanine phosphoribosyltransferase, and deoxycytidine kinase, was characterized with regard to structure-activity relationships for certain inosine and guanosine analogs.  相似文献   

10.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM).  相似文献   

11.
The phosphorylation of inosine in the 5′-position to produce inosine-5′-monophosphate (5′-IMP) was studied in a number of microorganisms from our culture collection using pyrophosphate (PPi) as the phosphate source. Although many of the microorganisms screened were able to phosphorylate inosine, phosphotransferase activity specific to the 5′-position was found to be distributed among the bacteria belonging to the family Enterobacteriacea. Morganella morganii NCIMB10466 was selected for further study of 5′-IMP production. When M. morganii intact cells were taken approximately 0.2 mg/ml wet weight, 6.02 mg/ml (11.4 mM) of 5′-IMP were synthesized from 10 mg/ml (37.3 mM) of inosine and 250 mg/ml (560.0 mM) of tetrasodium pyrophosphate decahydrate in 9 h.  相似文献   

12.
A cytosolic 5'-nucleotidase, acting preferentially on IMP and GMP, has been isolated from human colon carcinoma extracts. This enzyme activity catalyzes also the transfer of the phosphate group of 5'-nucleoside monophosphates (mainly, 5'-IMP, 5'-GMP, and their deoxycounterparts) to nucleosides (preferentially inosine and deoxyinosine, but also nucleoside analogs, such as 8-azaguanosine and 2',3'-dideoxyinosine). It has been proposed that the enzyme mechanism involves the formation of a phosphorylated enzyme as an intermediate which can transfer the phosphate group either to water or to the nucleoside. The enzyme is activated by some effectors, such as ATP and 2,3-diphosphoglycerate. Results indicate that the effect of these activators is mainly to favor the transfer of the phosphate of the phosphorylated intermediate to the nucleoside (i.e., the nucleoside phosphotransferase activity). This finding is in accordance with previous suggestions that cytosolic 5'-nucleotidase cannot be considered a pure catabolic enzyme.  相似文献   

13.
An improved assay was developed to detect direct purine nucleoside phosphorylating activity in cell-free extracts. Direct inosine phosphorylating activity was detected in 2 of 70 species tested. Both activities, which depended on magnesium ion and ATP, phosphorylated a hydroxyl group at the 5' position of inosine. The new assay was shown to be useful for screening of direct purine nucleoside phosphorylating activity and have the potential to detect inosine kinase in the presence of a background of nucleoside phosphorylase and purine phosphoribosyltransferase activities. Previously, the latter two activities made it difficult to correctly detect direct phosphorylation of inosine by inosine kinase.  相似文献   

14.
Regulation of cytosol 5'-nucleotidase by adenylate energy charge   总被引:5,自引:0,他引:5  
In the physiological range of the adenylate energy charge in liver (0.7-0.9), th rate of AMP-hydrolysis catalysed by rat liver cytosol 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) increased sharply with decreasing energy charge. In addition, a decrease in the concentration of Pi caused marked acceleration of the AMP-hydrolysing activity over the physiological range of adenylate energy charge. These responses seem to serve to protect the cells against a metabolic stress which could result from sudden utilization of ATP by removal of AMP. The AMP-hydrolysing activity of this enzyme decreased sharply as the size of the adenine nucleotide pool decreased in the physiological range. This effect may be a self-limiting response to prevent excess depletion of the pool. IMP-hydrolysing activity of this enzyme increased with increasing adenylate energy charge. But no marked response to its variation within the physiological range was observed. On the basis of the data obtained in this study, the IMP-hydrolysing activity of the cytosol 5'-nucleotidase in rat liver cells seems to be comparable to that of AMP deaminase reaction, but the AMP-hydrolysing activity was estimated to be less than 10% of AMP deaminase reaction at energy charge value of about 0.7. This strongly suggests that the AMP leads to IMP leads to inosine pathway is more significant that the AMP leads to adenosine leads to inosine pathway in rat liver.  相似文献   

15.
Ecto-5'-nucleotidase is regarded as being the key enzyme in the formation of the neuromodulator adenosine from released ATP. However, the association of ecto-5'-nucleotidase with nerve terminals is not consensual. Only enzyme histochemical and biochemical studies, but not immunocytochemical studies, agree on a general synaptic location of the enzyme. To clarify this issue further we tested the effect of an antibody against ecto-5'-nucleotidase, previously used in immunocytochemical studies, on the activity of ecto-5'-nucleotidase in fractions of nerve terminals isolated from different areas of rat hippocampus. The specific activity of extracellular AMP catabolism was higher in synaptosomes from the CA3 area (0.81+/-0.06 nmol/min/mg of protein) than from synaptosomes from the CA1 area or the dentate gyrus or from the whole hippocampus (0.49-0.68 nmol/ min/mg of protein). The catabolism of AMP (10 microM) was equally inhibited (85-92%) in synaptosomes from whole hippocampus, CA1, CA3, or dentate gyrus by alpha,beta-methylene-ADP (100 microM) and equally unaffected by p-nitrophenyl phosphate (0.5 mM) or rabbit IgGs (100 microg/ml). However, the antiserum against ecto-5'-nucleotidase (100 microg/ml) inhibited extracellular AMP catabolism by 44% in CA3 synaptosomes but had little or no effect in synaptosomes from CA1, dentate gyrus, or whole hippocampus. A similar difference in the inhibitory potential of the antibody was observed between fractions of isolated 5'-nucleotidase binding to concanavalin A-Sepharose (70%) and fractions not retained by the lectin column (18%). Taken together, these results suggest that immunological isoforms of ecto-5'-nucleotidase exist in the rat hippocampal nerve terminals, with predominance in the CA3 area.  相似文献   

16.
Varicella-zoster virus (VZV) encodes a thymidine kinase (EC 2.7.2.21) which phosphorylates several antiviral nucleoside analogs, including acyclovir (ACV). A mutation in the VZV thymidine kinase coding sequence, resulting in an arginine-to-glutamine substitution at amino acid residue 130 (R130Q), is associated with clinical resistance to ACV. We have expressed the wild-type and the mutant enzymes in bacteria and have studied the kinetic characteristics of the purified enzymes. The arginine-to-glutamine substitution resulted in decreased catalytic activity and altered substrate specificity. The most striking effect was a decrease in the rates of nucleoside phosphorylation to less than 2% of the rates with the wild-type enzyme. This was accompanied by increased apparent Km values for thymidine and deoxycytidine. ACV was not detectably phosphorylated by the R130Q enzyme but still competed with thymidine for the enzyme. The inability of the R130Q enzyme to catalyze the phosphorylation of ACV correlates with resistance to ACV noted with a clinical isolate of VZV.  相似文献   

17.
The ability of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells to drive their total purine requirements from inosine 5'-monophosphate, inosine, or hypoxanthine was compared. Inosine 5'-monophosphate first must be converted to inosine by the action of the enzyme ecto-5'-nucleotidase before it can be transported into the cell; inosine and hypoxanthine, however, can be transported directly. Mitogen-stimulated human peripheral blood T cells were treated with aminopterin to inhibit purine synthesis de novo and to make the cells dependent on an exogenous purine source. Thymidine was added as a source of pyrimidines. Under these conditions, 30 microM inosine 5'-monophosphate, inosine, and hypoxanthine showed comparable abilities to support [3H]thymidine incorporation into DNA or [3H]leucine incorporation into protein at rates equal to that of untreated control cultures. Similar results were found when azaserine was used to inhibit purine synthesis de novo, and thus DNA synthesis. In parallel experiments with the rapidly dividing human B lymphoblastoid cell line WI-L2, treatment with aminopterin (plus thymidine) inhibited the growth rate by greater than 95%. The normal growth rate was restored by the addition of 30 microM inosine 5'-monophosphate, inosine, or hypoxanthine to the medium. However, in similar experiments with cell line 1254, a derivative of WI-L2 which lacks detectable ecto-5'-nucleotidase activity, inosine and hypoxanthine (plus thymidine), but not inosine 5'-monophosphate (and thymidine) were able to restore the growth inhibition due to aminopterin. These results show that the catalytic activity of ecto-5'-nucleotidase is sufficient to meet the total purine requirements of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells, and suggest that this enzyme may be important for purine salvage when rates of purine synthesis de novo are limited and/or an extracellular source of purine nucleotides is available.  相似文献   

18.
Acholeplasma laidlawii B-PG9 was examined for 16 cytoplasmic enzymes with activity for purine salvage and interconversion. Phosphoribosyltransferase activities for adenine, guanine, xanthine, and hypoxanthine were shown. Adenine, guanine, xanthine, and hypoxanthine were ribosylated to their nucleoside. Adenosine, inosine, xanthosine, and guanosine were converted to their base. No ATP-dependent phosphorylation of nucleosides to mononucleotides was found. However, PPi-dependent phosphorylation of adenosine, inosine, and guanosine to AMP, inosine monophosphate, and GMP, respectively, was detected. Nucleotidase activity for AMP, inosine monophosphate, xanthosine monophosphate, and GMP was also found. Interconversion of GMP to AMP was detected. Enzyme activities for the interconversion of AMP to GMP were not detected. Therefore, A. laidlawii B-PG9 cannot synthesize guanylates from adenylates or inosinates. De novo synthesis of purines was not detected. This study demonstrates that A. laidlawii B-PG9 has the enzyme activities for the salvage and limited interconversion of purines and, except for purine nucleoside kinase activity, is similar to Mycoplasma mycoides subsp. mycoides. This is the first report of a PPi-dependent nucleoside kinase activity in any organism.  相似文献   

19.
Guanylate kinase was purified from human erythrocytes by affinity chromatography using GMP-agarose, and the four isozymes which are present were separated by chromatofocusing. The kinetic properties of each isozyme were analyzed with respect to the natural substrates GMP and dGMP, and the 5'-monophosphate derivatives of the antiviral nucleoside analogs 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) and 9-(2-hydroxyethoxymethyl)guanine (ACV, Acyclovir). The analysis of substrate kinetics yielded Km values for DHPG 5'-monophosphate which were similar with all isozymes (42-54 microM), and about 3-fold higher than the Km values obtained for GMP. Km values obtained with ACV 5'-monophosphate were 10-20-fold higher than the GMP values and varied nearly 4-fold among isozymes (209-753 microM). GMP produced the highest enzyme velocities with all isozymes, followed by dGMP, DHPG 5'-monophosphate, and ACV 5'-monophosphate, in that order. Differences in maximal velocities among isozymes were generally small. DHPG 5'-monophosphate inhibited the isozymes by a simple competitive mechanism with respect to GMP. In contrast, ACV 5'-monophosphate acted as an apparent hyperbolic mixed-type inhibitor. Similar patterns of inhibition were obtained with all isozymes. It is probable that differences is the reactivity of DHPG 5'-monophosphate and ACV 5'-monophosphate with individual guanylate kinase isozymes do not contribute significantly to differences in their antiviral effects.  相似文献   

20.
A preliminary examination for the purification and characterization of 5'-nucleotidase of fish muscle was carried out and the following results were obtained. 1. The activities of 5'-nucleotidase in the muscles of marine vertebrates and invertebrates (total 11 species) were determined. The highest activity of 5'-nucleotidase was found in Blackrock fish Sebastes inermis, which was then used as a material for estimation of subcellular distribution and solubilization of the enzyme. 2. The 5'-nucleotidase of ordinary muscle of the fish Sebastes inermis was found in nuclear, microsomal and cytosolic fractions. About half of the total activity was found in the nuclear fraction, whereas the highest specific activity was observed in the microsomal fraction. 3. Complete solubilization of the enzyme was attained by using a high concentration of detergent such as Triton X-100, CHAPS, octylglucoside, octylthioglucoside and sodium deoxycholate, suggesting that the enzyme was tightly bound to the membrane. 4. Based on the results of solubility and stability tests, Triton X-100 seemed suitable for solubilizing 5'-nucleotidase from the membrane. 5. Microsomal 5'-nucleotidase was an Mg(2+)-activated enzyme, and no inactivation was observed up to 50 mM of Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号