首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geographic variation in the susceptibility of the striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), in China to Bacillus thuringiensis (Bt) insecticidal crystal proteins Cry1Ac and Cry1Ab was studied to establish baseline information for comparing the future response of populations with increased exposure to Bt products. Rice is the major host of C. suppressalis, and Bt rice ma) be released in China in the near future. Twelve populations of the pest were collected from the major rice-growing regions of China. LC50 estimates were determined for all populations for Cry1Ac and for eight populations for Cry1Ab. The bioassay results indicated that the range of LC50 in neonate larvae to Cry1Ac and Cry1Ab was from approximately 15 to approximately 157 mg (AI)/L and approximately 2 to approximately 34 mg (AI)/L, respectively. LC50 values were lower for Cry1Ab than for Cry1Ac, and there was a significant positive correlation between the two toxins tested.  相似文献   

2.
The susceptibility of larvae of the diamondback moth, Plutella xylostella Linnaeus to purified crystal proteins and spore-crystal preparations of Bacillus thuringiensis was investigated for 13 populations from seven states in India. The LC50 (microg ml(-1), 48 h) values of Cry proteins for different populations of P. xylostella ranged from 0.14-3.74 (Cry1Aa), 0.007-1.25 (Cry1Ab), 0.18-2.47 (Cry1Ac) and 0.12-3.0 (Cry1C). The LC50 (mg (ai) l(-1), 48 h) of spore-crystal preparations ranged from 0.02-0.98 (HD-1) and 0.06-2.14 (HD-73). Significantly higher LC50 values for all tested toxins and strains were obtained with populations collected from Iruttupallam and Ottanchathiram in the southern state of Tamil Nadu, whereas some of the populations collected from the northern part of India were more susceptible than the susceptible IARI 17-65 population. The high levels of resistance in the Iruttupallam and Ottanchathiram populations to Cry1Ab suggested selection pressure by Cry1Ab, which is the predominant toxin in B. thuringiensis formulations used in India. Cry1Ab was found to be more toxic than the other toxins. The population from Iruttupallam showed increased resistance following selection with Cry1Ab in the laboratory (LC50 from 1.25 to 4.31 microg ml(-1) over two generations) and also showed cross resistance to CrylAa and CrylAc. The resistance to Biobit in the field population from Iruttupallam declined slowly; requiring c. 33 generations for an overall 10-fold decline in LC50 when the insects were reared in the laboratory without exposure to B. thuringensis.  相似文献   

3.
Intra-specific variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) in Australia to the Cry1Ac and Cry2Ab delta-endotoxins from Bacillus thuringiensis (Berliner) (Bt) was determined to establish a baseline for monitoring changes that might occur with the use of Bt cotton. Strains of H. armigera and H. punctigera were established from populations collected primarily from commercial farms throughout the Australian cotton belts. Strains were evaluated for susceptibility using two bioassay methods (surface treatment and diet incorporation) by measuring the dose response for mortality (LC50) and growth inhibition (IC50). The variation in LC50 among H. armigera (n=17 strains) and H. punctigera (n=12 strains) in response to Cry1Ac was 4.6- and 3.2-fold, respectively. The variation in LC50 among H. armigera (n=19 strains) and H. punctigera (n=12 strains) to Cry2Ab was 6.6- and 3.5-fold, respectively. The range of Cry1Ac induced growth inhibition from the 3rd to 4th instar in H. armigera (n=15 strains) was 3.6-fold and in H. punctigera (n=13 strains) was 2.6-fold, while the range of Cry2Ab induced growth inhibition from neonate to 3rd instar in H. armigera (n=13 strains) was 4.3-fold and in H. punctigera (n=12 strains) was 6.1-fold. Variation in susceptibility was also evaluated for two age classes (neonates and 3rd instars) in laboratory strains of H. armigera and H. punctigera. Neonates of H. punctigera had the same or higher sensitivity to Bt than 3rd instars. Neonates of H. armigera were more sensitive to Cry2Ab than 3rd instars, while being less sensitive to Cry1Ac than 3rd instars. Differences in the two methods of bioassay used affected relative sensitivity of species to Bt toxins, highlighting the need to standardize bioassay protocols.  相似文献   

4.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

5.
In the process of development of insect resistant transgenic plants and also to evaluate the consistency in expression of the toxin under greenhouse and field conditions, immunological and bioassays are commonly used. The assay being described in this report, is based on the high levels of sensitivity of a cotton leaf feeding insect, the semilooper, Anomis flava (Fabricius) to Cry toxins (Cry1Aa, Cry1Ab and Cry1Ac). The assay is sensitive, quick and reproducible. Cry1Ac was the most toxic followed by Cry1Ab and Cry1Aa. LC 50 s of the three toxins on first instar larvae ranged from 0.79-6.08 ng cm -2 of leaf. LC 50 s of Cry1Ac for the fourth instar larvae ranged from 12.91-21.14 ng cm -2 while LC 50 s for Cry1Aa and Cry1Ab were in the range 53.0-138 ng cm -2 . The fiducial limits (at 95% probability) of the probit assay data indicated that there was no difference in response between the three different populations to each of the three toxins. The data from all assays were pooled for each of the three toxins separately and subjected to regression analysis to obtain a cumulative log dose response for first and fourth instar larvae. These can be used as standard curves to quantify toxin expression in plants based on mortality response of either first or fourth instar A. flava larvae. Apart from being used to detect expression in putative Bt cotton transgenic plants, the assay can also be used to follow the activity of Cry toxins in transgenic cotton plants in the field during the growing season.  相似文献   

6.
Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC50 of 0.24 and 0.30 μg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations.  相似文献   

7.
Baseline susceptibility of legume pod borer (LPB) to the insecticidal crystal proteins (ICPs) from Bacillus thuringiensis, viz, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca and Cry2Aa was assessed in Taiwan. Insect bioassays were performed by incorporating the Bt delta-endotoxins into the LPB artificial diet. The efficacy of different Bt delta-endotoxins against second instar larvae of LPB showed that the toxin Cry1Ab was the most potent toxin (LC(50) 0.207ppm), followed by Cry1Ca, Cry1Aa, Cry2Aa and Cry1Ac in descending order, with LC(50)s 0.477ppm, 0.812ppm, 1.058ppm and 1.666ppm, respectively. Hence, Cry1Ab and/or Cry1Ca toxins would provide effective control of early larval stages of LPB.  相似文献   

8.
So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations.  相似文献   

9.
Toxicity tests were performed to find among Cry1 and Cry2 Bacillus thuringiensis crystal proteins those with high activity against the cabbage looper. Tests were performed with neonate larvae on surface-contaminated artificial diet. The crystal proteins found to be toxic were, from higher to lower toxicity: Cry1Ac, Cry1Ab, Cry1C, Cry2Aa, Cry1J, and Cry1F (LC50 of 1.14.1, 3.4-4.4, 12, 34, 87, and 250 ng/cm2, respectively). Cry1B, Cry1D, and Cry1E can be considered nontoxic (LC50 higher than 2500 ng/cm2). Cry1Aa was moderately toxic to nontoxic, depending on the source (LC50 of 420 ng/cm2 from PGS and 8100 ng/cm2 from Ecogen). In vitro binding assays with trypsin-activated 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac crystal proteins and brush border membrane vesicles from midgut larvae showed a direct correlation between toxicity and binding affinity. Heterologous competition experiments indicated that Cry1Aa and Cry1F bind, though only at very high concentrations, to the Cry1Ab/Cry1Ac shared high-affinity binding site.  相似文献   

10.
Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops.  相似文献   

11.
The receptor binding step in the molecular mode of action of five delta-endotoxins (Cry1Ab, Cry1Ac, Cry1C, Cry2A, and Cry9C) from Bacillus thuringiensis was examined to find toxins with different receptor sites in the midgut of the striped stem borer (SSB) Chilo suppressalis (Walker) and yellow stem borer (YSB) Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae). Homologous competition assays were used to estimate binding affinities (K(com)) of (125)I-labelled toxins to brush border membrane vesicles (BBMV). The SSB BBMV affinities in decreasing order was: Cry1Ab = Cry1Ac > Cry9C > Cry2A > Cry1C. In YSB, the order of decreasing affinities was: Cry1Ac > Cry1Ab > Cry9C = Cry2A > Cry1C. The number of binding sites (B(max)) estimated by homologous competition binding among the Cry toxins did not affect toxin binding affinity (K(com)) to both insect midgut BBMVs. Results of the heterologous competition binding assays suggest that Cry1Ab and Cry1Ac compete for the same binding sites in SSB and YSB. Other toxins bind with weak (Cry1C, Cry2A) or no affinity (Cry9C) to Cry1Ab and Cry1Ac binding sites in both species. Cry2A had the lowest toxicity to 10-day-old SSB and Cry1Ab and Cry1Ac were the most toxic. Taken together, the results of this study show that Cry1Ab or Cry1Ac could be combined with either Cry1C, Cry2A, or Cry9C for more durable resistance in transgenic rice. Cry1Ab should not be used together with Cry1Ac because a mutation in one receptor site could diminish binding of both toxins.  相似文献   

12.
Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.  相似文献   

13.
Susceptibilities of bollworm, Helicoverpa zea (Boddie) and tobacco budworm, Heliothis virescens (F.) to Cry1Ac were measured via a diet-incorporated assay with MPV II at the University of Arkansas during 2002-2004. Lethal concentration-mortality (LC50) estimates of five laboratory, seven laboratory-cross, and 10 field populations of H. virescens varied 12-fold. Pooled susceptibilities of H. virescens across all laboratory and field populations varied five-fold. The LC50 estimates for H. virescens were higher than those reported by previous research before the introduction of transgenic crops. However, the ratio of susceptibility of laboratory and field populations was similar, suggesting no change in overall species susceptibility. Individual LC50 estimates of five laboratory, nine laboratory-cross, and 57 field populations of H. zea varied over 130-fold. Pooled susceptibilities across laboratory and field populations varied widely. Among the field populations, colonies from non-Bacillus thuringiensis (Bt) crops were generally more susceptible than those from Bt crops. Across the Bt crops expressing Cry protein, colonies from Bollgard (Monsanto Company) cotton had lower susceptibility to CrylAc than those from Bt corn and those from non-Bt crops.  相似文献   

14.
贺明霞  何康来  王振营  王新颖  李庆 《昆虫学报》2013,56(10):1135-1142
亚洲玉米螟Ostrinia furnacalis (Guenée) 是危害玉米的重要害虫之一, 转Bt基因抗虫玉米为其防治提供了新的途径。然而, 靶标害虫产生抗性将严重阻碍Bt制剂及转Bt基因抗虫玉米的持续应用。明确害虫对转Bt基因玉米表达的毒素蛋白的抗性演化, 对于制定科学有效的抗性治理策略具有重要的理论和实际意义。本实验通过人工饲料汰选法研究了Bt Cry1Ie毒素胁迫下亚洲玉米螟的抗性发展及汰选14代的种群对其他Bt毒素(Cry1Ab, Cry1Ac和Cry1Fa)的交互抗性, 并观察了Cry1Ie蛋白胁迫对亚洲玉米螟生物学的影响。结果表明: 随着汰选压不断提高, 亚洲玉米螟种群对Cry1Ie毒素的敏感性逐渐下降。汰选14代后, 种群对Cry1Ie毒素的抗性水平提高了23倍。然而, Cry1Ab, Cry1Ac和Cry1Fa对所获Cry1Ie汰选种群的毒力与对敏感种群的毒力相比没有显著差异, 说明Cry1Ie汰选没有引起亚洲玉米螟对Cry1Ab, Cry1Ac和Cry1Fa毒素产生交互抗性。同时, 与敏感种群相比, Cry1Ie汰选14代的种群幼虫平均发育历期延长5.7 d, 蛹重减轻13.7%, 单雌产卵量下降40.0%。本研究结果说明, 大面积单一种植转cry1Ie基因抗虫玉米, 可能引起亚洲玉米螟产生抗性; 亚洲玉米螟Cry1Ie抗性种群对Cry1Ab, Cry1Ac和Cry1Fa没有交互抗性, 含有cry1Ie和cry1Ab, cry1Ac或cry1F双/多基因抗虫玉米, 可作为靶标害虫抗性治理的重要策略。  相似文献   

15.
So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations.  相似文献   

16.
Insecticide control is the major measure for suppression of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) damage, and a few insecticides used for long time have proved to fail to control this pest in China. Several new chemicals have been introduced for control of C. medinalis. However, there was no baseline susceptibility data of C. medinalis to insecticides used or will be in use. In this study, a seedling dipping method was developed for bioassay of insecticide susceptibility of C. medinalis. Dose responses of C. medinalis to 11 insecticides were tested. Interpopulation sensitivity to insecticides was compared. Based on LC50 values, C. medinalis was most susceptible to antibiotic insecticides (abamectin, emamectin benzoate, and spinosad) and least sensitive to monosultap and a Bacillus thuringiensis (Bt) product. Chlorantraniliprole and insect growth regulator (IGR) insecticides (tebufenozide and hexaflumuron) exhibited great efficacy against C. medinalis. No susceptibility difference was observed for antibiotic insecticide and IGR insecticides among three populations. Narrow variation in tolerant level was detected for organophosphates insecticides, chlorantraniliprole, monosultap, and Bt. The results in this study provided baseline susceptibility data of C. medinalis to 11 insecticides and also offered useful information for choice of alternative insecticide and for integrated resistance management of C. medinalis.  相似文献   

17.
Thirteen of the most common lepidopteran-specific Cry proteins of Bacillus thuringiensis have been tested for their efficacy against newly hatched larvae of two populations of the spiny bollworm, Earias insulana. At a concentration of 100 microg of toxin per milliliter of artificial diet, six Cry toxins (Cry1Ca, Cry1Ea, Cry1Fa, Cry1Ja, Cry2Aa, and Cry2Ab) were not toxic at all. Cry1Aa, Cry1Ja, and Cry2Aa did not cause mortality but caused significant inhibition of growth. The other Cry toxins (Cry1Ab, Cry1Ac, Cry1Ba, Cry1Da, Cry1Ia, and Cry9Ca) were toxic to E. insulana larvae. The 50% lethal concentration values of these toxins ranged from 0.39 to 21.13 microg/ml (for Cry9Ca and Cry1Ia, respectively) for an E. insulana laboratory colony originating from Egypt and from 0.20 to 4.25 microg/ml (for Cry9Ca and Cry1Da, respectively) for a laboratory colony originating from Spain. The relative potencies of the toxins in the population from Egypt were highest for Cry9Ca and Cry1Ab, and they were both significantly more toxic than Cry1Ac and Cry1Ba, followed by Cry1Da and finally Cry1Ia. In the population from Spain, Cry9Ca was the most toxic, followed in decreasing order by Cry1Ac and Cry1Ba, and the least toxic was Cry1Da. Binding experiments were performed to test whether the toxic Cry proteins shared binding sites in this insect. 125I-labeled Cry1Ac and Cry1Ab and biotinylated Cry1Ba, Cry1Ia, and Cry9Ca showed specific binding to the brush border membrane vesicles from E. insulana. Competition binding experiments among these toxins showed that only Cry1Ab and Cry1Ac competed for the same binding sites, indicating a high possibility that this insect may develop cross-resistance to Cry1Ab upon exposure to Cry1Ac transgenic cotton but not to the other toxins tested.  相似文献   

18.
Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis   总被引:2,自引:0,他引:2  
Nine of the most common lepidopteran active Cry proteins from Bacillus thuringiensis have been tested for activity against Spodoptera exigua. Because of possible intraspecific variability, three laboratory strains (FRA, HOL, and MUR) have been used. Mortality assays were performed with the three strains. LC50 values for the active toxins were determined to the FRA and the HOL strains, whereas susceptibility of the MUR strain was assessed using only two concentrations. The results showed that Cry1Ca, Cry1Da, and Cry1Fa were the most effective toxins with all strains. Cry1Ab was found effective for the HOL strain, but very little effective against FRA (6.5-fold) and MUR strains. Cry1Aa and Cry1Ac were marginally toxic to all strains, whereas the rest of the toxins tested (Cry1Ba, Cry2Aa, and Cry2Ab) were non toxic. Significant differences in susceptibility among strains were also found for Cry1Da, being the FRA strain 25-fold more susceptible than the HOL strain. Growth inhibition, as an additional susceptibility parameter, was determined in the FRA strain with the 9 toxins. The toxicity profile obtained differed from that observed in mortality assays. Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, Cry1Da, and Cry1Fa toxins produced a similar larval growth inhibition. Cry2Aa had a lower but clear effect on larval growth inhibition, whereas Cry1Ba and Cry2Ab did not have any effect.  相似文献   

19.
采用浸叶法测定了2003年秋季、2004年春季采自广东惠州、福建福州、浙江杭州和江苏南京的小菜蛾Plutella xylostella田间种群对Cry1Aa、Cry1Ab、Cry1Ac和Cry2Aa以及Bt制剂kurstaki亚种 (Bacillus thuringiensis subsp. kurstaki, Btk)的抗性水平。与敏感品系PHI-S相比,广东惠州田间小菜蛾种群的抗性水平最高,其对Cry1Ab和Cry1Ac的抗性分别达到了168和120倍,均为高抗水平; 对Btk制剂的抗性有47倍,达到了中抗水平;对Cry1Aa和Cry2Aa具有低水平抗性 (分别为5.8和5.6倍)。福建福州、浙江杭州和江苏南京田间小菜蛾种群抗性水平相近,对Cry1Ab和Cry1Ac具有低至中等水平抗性 (8~28倍),对Btk制剂具有低水平抗性 (3.5~7倍),对Cry1Aa和Cry2Aa还没有产生明显抗性。因此,在我国东南沿海地区要注意Btk制剂与Bt其他亚种制剂或其他生物杀虫剂轮换使用,以减小Bt制剂对小菜蛾的选择压力,延缓小菜蛾对Bt抗性的发展。  相似文献   

20.
Zhang H  Yin W  Zhao J  Jin L  Yang Y  Wu S  Tabashnik BE  Wu Y 《PloS one》2011,6(8):e22874
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号