首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Three greenhouse experiments were conducted to evaluate western corn rootworm, Diabrotica virgifera virgifera LeConte, beetle emergence from individual pots containing glyphosate-tolerant transgenic corn, Zea mays L., expressing the Cry3Bbl endotoxin from the soil bacterium Bacillus thuringiensis Berliner (MON863), nontransgenic glyphosate-tolerant isoline corn, grassy weeds (giant foxtail, Setariafaberi R.A.W. Herrm; and large crabgrass, Digitaria sanguinalis (L.) Scop.), and combinations thereof infested with 40 neonate larvae. In the first two experiments, pots with corn and weed combinations were treated with glyphosate 5 d after larval infestation to kill the weeds. The third experiment was similar to the first two except that untreated corn-weed combinations were added. In all three experiments beetle emergence varied significantly. Beetle recovery generally did not vary between the nontransgenic, nontransgenic + weeds, and MON863 + weeds. Significantly more beetles were recovered from MON863 + weeds than MON863 alone or weeds alone. Beetle emergence from MON863 + weeds was likely enhanced by larvae that initially survived on weeds before application of glyphosate. Preliminary data indicated that fecundity was highest from beetles reared on nontransgenic isoline corn and fewer eggs were laid by beetles reared on MON863 alone. Egg viability was generally lowest from beetles reared on MON863. The implications of these results in relation to insect resistant management are discussed.  相似文献   

2.
Dispersal of larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in specific combinations of transgenic corn expressing the Cry3Bb1 protein and nontransgenic, isoline corn was evaluated in a 2-yr field study. In total, 1,500 viable western corn rootworm eggs were infested in each subplot. Each year, plant damage and larval recovery were evaluated among four pedigree combinations (straight transgenic; straight nontransgenic corn; nontransgenic corn with a transgenic central, infested plant; and transgenic corn with a nontransgenic central, infested plant) on six sample dates between egg hatch and pupation. For each subplot, the infested plant, three successive plants down the row (P1, P2, and P3), the closest plant in the adjacent row of the plot, and a control plant were sampled. The number of western corn rootworm larvae recovered from transgenic rootworm-resistant plants adjacent to infested nontransgenic plants was low and not statistically significant in either 2001 or 2002. In 2001, significantly fewer larvae were recovered from transgenic rootworm-resistant plants than from nontransgenic plants when both were adjacent to infested, nontransgenic plants. In 2002, significantly more neonate western corn rootworm larvae were recovered from nontransgenic plants adjacent to infested, transgenic rootworm-resistant plants than nontransgenic plants adjacent to infested, nontransgenic plants on the second sample date. Together, these data imply that both neonate and later instar western corn rootworm larvae prefer nontransgenic roots to transgenic rootworm-resistant roots when a choice is possible. However, when damage to the infested, nontransgenic plant was high, western corn rootworm larvae apparently moved to neighboring transgenic rootworm-resistant plants and caused statistically significant, although only marginally economic, damage on the last sample date in 2001. Implications of these data toward resistance management plan are discussed.  相似文献   

3.
If registered, transgenic corn, Zea mays L., with corn rootworm resistance will offer a viable alternative to insecticides for managing Diabrotica spp. corn rootworms. Resistance management to maintain susceptibility is in the interest of growers, the Environmental Protection Agency, and industry, but little is known about many aspects of corn rootworm biology required for an effective resistance management program. The extent of larval movement by the western corn rootworm, Diabrotica virgifera virgifera LeConte, that occurs from plant-to-plant or row-to-row after initial establishment was evaluated in 1998 and 1999 in a Central Missouri cornfield. Post-establishment movement by western corn rootworm larvae was clearly documented in two of four treatment combinations in 1999 where larvae moved up to three plants down the row and across a 0.46-m row. Larvae did not significantly cross a 0.91-m row after initial host establishment in 1998 or 1999, whether or not the soil had been compacted by a tractor and planter. In the current experiment, western corn rootworm larvae moved from highly damaged, infested plants to nearby plants with little to no previous root damage. Our data do not provide significant insight into how larvae might disperse after initial establishment when all plants in an area are heavily damaged or when only moderate damage occurs on an infested plant. A similar situation might also occur if a seed mixture of transgenic and isoline plants were used and if transgenic plants with rootworm resistance are not repellent to corn rootworm larvae.  相似文献   

4.
Insect resistance management (IRM) can extend the lifetime of management options, but depends on extensive knowledge of the biology of the pest species involved for an optimal plan. Recently, the Environmental Protection Agency (EPA) registered seed blends refuge for two of the transgenic Bacillus thuringiensis (Bt) corn products targeting the western corn rootworm, Diabrotica virgifera virgifera LeConte. Larval movement between Bt and isoline plants can be detrimental to resistance management for high dose Bt products because the larger larvae can be more tolerant of the Bt toxins. We assessed movement of western corn rootworm larvae among four spatial arrangements of SmartStax corn (expressing both the Cry34/35Ab1 and Cry3Bb1 proteins) and isoline plants by infesting specific plants with wild type western corn rootworm eggs. Significantly fewer western corn rootworm larvae, on average, were recovered from infested SmartStax plants than infested isoline plants, and the SmartStax plants were significantly less damaged than corresponding isoline plants. However, when two infested isoline plants surrounded a SmartStax plant, a significant number of larvae moved onto the SmartStax plant late in the season. These larvae caused significant damage both years and produced significantly more beetles than any other plant configuration in the study (including isoline plants) in the first year of the study. This plant configuration would occur rarely in a 5% seed blend refuge and may produce beetles of a susceptible genotype because much of their initial larval development was on isoline plants. Results are discussed in terms of their potential effects on resistance management.  相似文献   

5.
A greenhouse experiment was conducted to evaluate the effect of soil-dwelling larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, on infection of maize roots by the mycotoxin-producing plant-pathogenic fungus, Fusarium verticillioides (Saccardo) Nirenberg (synonym=Fusarium moniliforme Sheldon). The time and order of application of F. verticillioides and western corn rootworm were varied in three different treatments to investigate the influence of timing on root colonization of F. verticillioides and western corn rootworm larval development. Root feeding by western corn rootworm larvae increased root colonization by F. verticillioides (as determined by real-time polymerase chain reaction) up to 50-fold when a high inoculum (10(7) spores/plant) of F. verticillioides was applied before western corn rootworm eggs were added. This effect was stronger the earlier F. verticillioides was applied relative to the time of western corn rootworm egg application but was only significant for the high F. verticillioides inoculum density treatment; F. verticillioides colonization was not increased when a low F. verticillioides inoculum density (10(6) spores/plant) was applied. F. verticillioides slightly suppressed larval development in that the ratio of second- to third-instar larvae was higher in treatments with F. verticillioides than without F. verticillioides. F. verticillioides reduced western corn rootworm head capsule width when applied before or simultaneously with western corn rootworm. The results of this study are discussed focusing on conditions that favor root colonization by F. verticillioides and its influence on western corn rootworm larval development.  相似文献   

6.
In previous crop rotation research, adult emergence traps placed in plots planted to Cuphea PSR-23 (a selected cross of Cuphea viscosissma Jacq. and Cuphea lanceolata Ait.) caught high numbers of adult western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), suggesting that larvae may have completed development on this broadleaf plant. Because of this observation, a series of greenhouse and field experiments were conducted to test the hypothesis that Cuphea could serve as a host for larval development. Greenhouse-grown plants infested with neonates of a colonized nondiapausing strain of the beetle showed no survival of larvae on Cuphea, although larvae did survive on the positive control (corn, Zea mays L.) and negative control [sorghum, Sorghum bicolor (L.) Moench] plants. Soil samples collected 20 June, 7 July, and 29 July 2005 from field plots planted to Cuphea did not contain rootworm larvae compared with means of 1.28, 0.22, and 0.00 rootworms kg(-1) soil, respectively, for samples collected from plots planted to corn. Emergence traps captured a peak of eight beetles trap(-1) day(-1) from corn plots on 8 July compared with a peak of 0.5 beetle trap(-1) day(-1) on 4 August from Cuphea plots. Even though a few adult beetles were again captured in the emergence traps placed in the Cuphea plots, it is not thought to be the result of successful larval development on Cuphea roots. All the direct evidence reported here supports the conventional belief that rootworm larvae do not survive on broadleaf plants, including Cuphea.  相似文献   

7.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is one of the most economically important insect pests threatening the production of corn, Zea mays (L.), in the United States. Throughout its history, this insect has displayed considerable adaptability by overcoming a variety of pest management tactics, including the cultural practice of annual crop rotation. Since first reported in Illinois in the late 1980s, populations of the rotation‐resistant western corn rootworm have spread over a wide area of the eastern Corn Belt. Currently, little information is available concerning the interaction of rotation resistance with the use of genetically modified corn expressing insecticidal toxins from Bacillus thuringiensis Berliner (Bt), a popular tactic for preventing larval injury and its associated yield loss. The goal of this greenhouse experiment was to determine whether rotation‐resistant and rotation‐susceptible western corn rootworm larvae differ with respect to survival or development when exposed to single‐ or dual‐toxin (pyramided) Bt corn. Individual corn plants were infested with 225 near‐hatch eggs at the V5 (five leaf collar) growth stage. Larvae developed undisturbed on the root systems for 17 days, after which they were recovered using Berlese–Tullgren funnels. Surviving larvae were counted to estimate mortality, and head capsule widths were measured to assess development. Rotation‐resistant and rotation‐susceptible larvae had statistically similar mean levels of mortality and head capsule widths when exposed to both single‐toxin (Cry3Bb1 or Cry34/35Ab1) and pyramided (Cry3Bb1+ Cry34/35Ab1) Bt corn, suggesting that these two populations do not differ with respect to survival or development when exposed to Bt corn. Additionally, the statistically similar mean levels of mortality for larvae exposed to single‐toxin and pyramided Bt corn suggest that pyramided Bt hybrids containing the Cry3Bb1 and Cry34/35Ab1 toxins do not result in additive mortality for western corn rootworm larvae. Implications for management of this economically important pest are discussed.  相似文献   

8.
Amounts of the insecticide thiamethoxam required for 50% mortality of western corn rootworm larvae, Diabrotica virgifera virgifera LeConte, were reduced 100-fold when extracts of germinating corn, Zea mays L., were used to entice neonate larvae to feed on it. In behavioral bioassays, neonate rootworm larvae fed vigorously on filter paper disks treated with liquid pressed from corn roots. Moreover, disks treated with an acetone extract of corn (dried and rewetted with water) also elicited strong feeding from larvae. Larvae wandered away from filter paper disks treated with distilled water without feeding. Dilutions of thiamethoxam were tested in the bioassay alone or with corn extract and the efficacy of this insecticide was improved by the addition of the corn extract. For solutions containing 10 ppm thiamethoxam, 95% larval mortality occurred after 30 min of exposure when corn extract was present, but only 38% mortality occurred when the same concentration of insecticide alone (no feeding stimulants) was tested. Larval mortality after 24 h was significantly higher for corn extract-treated disks with 0.01, 0.1, 1, or 10 ppm insecticide than for the same concentrations without corn extract. Thiamethoxam did not deter larval feeding on corn extract, even at the highest concentration of thiamethoxam tested.  相似文献   

9.
The effect of egg density on establishment and dispersal of larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was evaluated in a 3-yr field study. Implications of these data for resistance management plans for Bt crops are discussed. Viable egg levels of 100, 200, 400, 800, and 1600 eggs per infested plant were evaluated in 2000, 2001, and 2002. A 3200 viable egg level was also tested in 2001 and 2002. All eggs were infested on one plant per subplot in a field that was planted to soybean, Glycine max (L.), in the previous year. For each subplot, the infested plant, three plants down the row, the closest plant in the adjacent row of the plot, and a control plant at least 1.5 m from any infested plant (six plants total) were sampled. In 2000, there were five sample dates between egg hatch and pupation, and in 2001 and 2002, there were six sample dates. On each sample date, four replications of each egg density were sampled for both larval recovery and plant damage. Initial establishment on a corn plant seemed to not be density-dependent because a similar percentage of larvae was recovered from all infestation rates. Plant damage and, secondarily, subsequent postestablishment larval movement were density-dependent. Very little damage and postestablishment movement occurred at lower infestation levels, but significant damage and movement occurred at higher infestation rates. Movement generally occurred at a similar time as significant plant damage and not at initial establishment, so timing of movement seemed to be motivated by available food resources rather than crowding. At the highest infestation level in 2001, significant movement three plants down the row and across the 0.76 m row was detected, perhaps impacting refuge strategies for transgenic corn.  相似文献   

10.
Field studies were conducted in 2003 and 2004 to determine the effects of grassy weeds, postemergence grass control, transgenic rootworm-resistant corn, Zea mays L., expressing the Cry3Bb1 endotoxin and glyphosate herbicide tolerance (Bt corn), and the interactions of these factors on western corn rootworm, Diabrotica virgifera virgifera LeConte, damage and adult emergence. Three insect management tactics (Bt corn, its nontransgenic isoline, and isoline plus tefluthrin) were evaluated with two weed species (giant foxtail, Setaria faberi Herrm, and large crabgrass, Digitaria sanquinalis L. Scop), and four weed management regimes (weed free, no weed management, early [V3-4] weed management and late [V5-6] weed management) in a factorial arrangement of a randomized split split-plot design. In each case, the isoline was also tolerant to glyphosate. Root damage was significantly affected by insect management tactics in both years, but weed species and weed management did not significantly affect damage to Bt corn in either year. Adult emergence was significantly affected by insect management tactics in both years and by weed species in 2003, but weed management and the interaction of all three factors was not significant in either year. The sex ratio of female beetles produced on Bt corn without weeds was generally greater than when weeds were present and this difference was significant for several treatments each year. Average dry weight of male and female beetles emerging from Bt corn was greater than the weights of beetles emerging from isoline or isoline plus tefluthrin in 2003, but there was no difference for females in 2004 and males weighed significantly less than other treatments in 2004. The implications of these results in insect resistance management are discussed.  相似文献   

11.
The major proteinase activity in extracts of larval midguts from the southern corn rootworm (SCR), Diabrotica undecimpunctata howardi, was identified as a cysteine proteinase that prefers substrates containing an arginine residue in the P1 position. Gelatin-zymogram analysis of the midgut proteinases indicated that the artificial diet-fed SCR, corn root-fed SCR, and root-fed western corn rootworms (Diabrotica virgifera virgifera) possess a single major proteinase with an apparent molecular mass of 25kDa and several minor proteinases. Similar proteinase activity pH profiles were exhibited by root-fed and diet-fed rootworms with the optimal activity being slightly acidic. Rootworm larvae reared on corn roots exhibited significantly less caseinolytic activity than those reared on the artificial diet. Midgut proteolytic activity from SCR was most sensitive to inhibition by inhibitors of cysteine proteinases. Furthermore, rootworm proteinase activity was particularly sensitive to inhibition by a commercial protein preparation from potato tubers (PIN-II). One of the proteins, potato cysteine proteinase inhibitor-10', PCPI-10', obtained from PIN-II by ion-exchange chromatography, was the major source of inhibitory activity against rootworm proteinase activity. PCPI-10' and E-64 were of comparable potency as inhibitors of southern corn rootworm proteinase activity (IC(50) =31 and 35nM, respectively) and substantially more effective than chicken egg white cystatin (IC(50) =121nM). Incorporation of PCPI-10' into the diet of SCR larvae in feeding trials resulted in a significant increase in mortality and growth inhibition. We suggest that expression of inhibitors such as PCPI-10' by transgenic corn plants in the field is a potentially attractive method of host plant resistance to these Diabrotica species.  相似文献   

12.
Field and laboratory studies were conducted in 2000 and 2001 to determine the feasibility of mass marking western corn rootworm adults, Diabrotica virgifera virgifera LeConte, with RbCl in the field. Results showed that application of rubidium (Rb) in solution to both the soil (1 g Rb/plant) and whorl (1 g Rb/plant) of corn plants was optimal for labeling western corn rootworm adults during larval development. Development of larvae on Rb-enriched corn with this technique did not significantly influence adult dry weight or survival. Rb was also highly mobile in the plant. Application of Rb to both the soil and the whorl resulted in median Rb concentrations in the roots (5,860 ppm) that were 150-fold greater than concentrations in untreated roots (38 ppm) 5 wk after treatment. Additionally, at least 90% of the beetles that emerged during the first 3 wk were labeled above the baseline Rb concentration (5 ppm dry weight) determined from untreated beetles. Because emergence was 72% complete at this time, a significant proportion of the population had been labeled. Results from laboratory experiments showed that labeled beetles remained distinguishable from unlabeled beetles for up to 4 d postemergence. The ability to efficiently label large numbers of beetles under field conditions and for a defined period with virtually no disruption of the population provides an unparalleled opportunity to conduct mark-recapture experiments for quantifying the short-range, intrafield movement of adult corn rootworms.  相似文献   

13.
Mortality of western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae due to MIR604 transgenic corn, Zea mays L., expressing the modified Cry3A (mCry3A) protein relative to survivorship on corn with the same genetic background without the gene (isoline corn) was evaluated at three Missouri sites in both 2005 and 2006. We made these comparisons by using wild-type western corn rootworm at three different egg densities (6,000, 3,000, and 1,500 eggs per m) so that the role of density-dependent mortality would be known. The mortality due to the mCry3A protein was 94.88% when averaged across all environments and both years. Fifty percent emergence of beetles was delayed approximately 5.5 d. Beetles were kept alive and their progeny evaluated on MIR604 and isoline corn in the greenhouse to determine whether survivorship on MIR604 in the field for one generation increased survivorship on MIR604 in the greenhouse in the subsequent generation. There was no significant difference in survivorship on MIR604 in greenhouse assays between larvae whose parents survived isoline and larvae whose parents survived MIR604 in the field the previous generation, indicating that many susceptible beetles survived MIR604 in the field the previous season along with any potentially resistant beetles. The data are discussed in terms of rootworm insect resistance management.  相似文献   

14.
Elevated concentrations of carbon dioxide (CO2) prevented neonate larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, from locating the roots of growing corn in behavioral bioassays conducted in soil tubs. When CO2 was pumped into one end of a soil tub, significantly more larvae were recovered from soil at the treated end than from soil around a growing corn plant at the opposite end of the tub. In controls with ambient air pumped into one end of a soil tub, significantly more larvae were recovered from the soil around the corn plant than from soil on the treated side. Larvae were unable to locate the roots of corn seedlings when CO2-generating materials were mixed into the soil. CO2-concentrations in soil were measured by mass spectrometry with selected ion monitoring at m/z 44. Granules composed of baker's yeast, yeast nutrients, and an organic substrate were prepared as a CO2 source and were tested in larger soil tub bioassays. Significantly fewer larvae were recovered from corn roots in the soil tubs with yeast granules than from corn roots in control soil tubs. The CO2-generating granules produced soil CO2 concentrations between 15.8 and 18.5 mmol/mol (compared with 1.7-2.6 mmol/mol in control tubs), and this was sufficient to prevent larvae from locating corn roots. In field trials, organic and inorganic CO2- generating treatments resulted in root ratings that were significantly lower than for the control plants.  相似文献   

15.
The ability to prevent significant root feeding damage to corn, Zea mays L., by the western corn rootworm, Diabrotica virgifera virgifera LeConte, by crop rotation with soybean, Glycine max (L.) Merr., has been lost in portions of the Corn Belt because this pest has adapted to laying eggs in soybean fields. Cuphea spp. has been proposed as a new broadleaf crop that may provide an undesirable habitat for rootworm adults because of its sticky surface and therefore may reduce or prevent oviposition in these fields. A 4-yr study (1 yr to establish seven rotation programs followed by 3 yr of evaluation) was conducted to determine whether crop rotation with Cuphea would provide cultural control of corn rootworm. In support of Cuphea as a rotation crop, fewer beetles were captured by sticky traps in plots of Cuphea over the 4 yr of this study compared with traps in corn and soybean, suggesting that fewer eggs may be laid in plots planted to Cuphea. Also, corn grown after Cuphea was significantly taller during vegetative growth, had significantly lower root damage ratings for 2 of 3 yr, and had significantly higher yields for 2 of 3 yr compared with continuous corn plots. In contrast to these benefits, growing Cuphea did not prevent economic damage to subsequent corn crops as indicated by root damage ratings > 3.0 recorded for corn plants in plots rotated from Cuphea, and sticky trap catches that exceeded the threshold of five beetles trap(-1) day(-1). Beetle emergence from corn plots rotated from Cuphea was significantly lower, not different and significantly higher compared with beetle emergence from continuous corn plots for 2002, 2003 and 2004 growing seasons, respectively. A high number of beetles were captured by emergence cages in plots planted to Cuphea, indicating that rootworm larvae may be capable of completing larval development by feeding on roots of Cuphea, although peak emergence lagged approximately 4 wk behind peak emergence from corn. Based on these data, it is unlikely that crop rotation with Cuphea will provide consistent, economical, cultural control of corn rootworm.  相似文献   

16.
Crop monitoring for adult corn rootworms, Diabrotica virgifera virgifera LeConte and Diabrotica barberi Smith and Lawrence, remains the best means to assess fields at risk from this pest if replanted to corn, Zea mays (L.). Improvements in sampling methodology, including the development of a sequential sampling plan, have reduced the minimum sampling time required to make a management decision to 20 min or less per field per visit. However, many growers and crop consultants still find this time commitment a constraint to repeated scouting. A common currently used sampling method involves systematically covering most of the field following a "W" pattern. The feasibility of replacing the current sampling pattern with a simpler and less time-consuming transect (straight line) pattern was assessed. When sampling methods were compared, computer simulations demonstrated that treatment decisions based on transect sampling would have an acceptably low error rate averaging 10% over a range of realistic corn rootworm densities (0-2 adults per plant). This error rate represented a decrease in accuracy of <1% compared with systematic sampling. Field trials using transect, systematic, and random sampling in each field were used to compare the categorization of adult corn rootworm densities into "above" or "below" threshold with a sequential sampling plan. Efficiency measured in time to reach a decision, number of corn plants evaluated, and time divided by plants observed were compared between sampling methods. The three methods did not differ significantly in the number of plants evaluated or in the categorization of corn rootworm populations. Transect sampling resulted in a significantly shorter time divided by plants observed (38 s), than either systematic (78 s), or random sampling methods (166 s). Based on these results transect sampling reduces sampling time 51% compared with systematic sampling and thus could be used to reduce total sampling times substantially.  相似文献   

17.
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of corn (Zea mays L.) in North America and has evolved resistance to crop rotation by ovipositing in alternate crops such as soybeans [Glycine max (L.) Merr.]. Through experiments with plants grown in the greenhouse and the field, we tested whether soybeans with resistance to the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), affected survival, fecundity, and consumption of soybean for D. v. virgifera. Soybean varieties tested included those types resistant to A. glycines (Rag1 and rag1/rag3) and a susceptible near isoline of the Rag1 variety. Females were provided with a diet of corn tissue for 4 d after which they were fed a diet of tissue from one of three soybean varieties for 4 d, starved for 4 d, or fed corn tissue. When fed greenhouse grown plants, strains differed significantly in survival and consumption, but consumption did not differ by variety of soybean. Diet treatment only affected fecundity; individuals fed corn continuously had greater fecundity than those individuals fed soybeans. In the experiment with plants grown in the field, leaf consumption differed among strains and individuals fed corn continuously had greater fecundity than the other treatments. Soybean varieties with Rag1 and rag1/rag3 resistance to A. glycines did not appear to affect the fitness of D. v. virgifera. Thus, planting of these A. glycines-resistant soybean varieties should not directly affect the spread of rotation-resistant D. v. virgifera.  相似文献   

18.
Abundance and head capsule width were measured for northern (Diabrotica barberi Smith & Lawrence) and western corn rootworm (D. virgifera virgifera LeConte) larvae recovered primarily from maize root systems but also from large soil cores each centered around a root system. Larvae for measurement derived from field populations under infestation and rotation regimes that allowed most specimens to be assigned to species. A frequency distribution of head capsule widths indicated three separate peaks for western corn rootworm, presumably representing frequency of the three larval instars, with no larvae measuring 280 or 420 microm in the valleys between peaks. Multiple normal curves fit to similar but partially overlapping peaks generated by northern corn rootworm suggested that division of first to second and second to third instar can best be made for this species at 267 and 406 microm, respectively (270 and 410 when measurements are made to the nearest 20 microm). These results implied that instar of individuals from mixed northern and western corn rootworm populations can be accurately judged from head capsule width without having to determine species. The relative abundance of western corn rootworm instars was similar in root systems removed from the center of 19-cm diameter x 19-cm deep soil cores and in soil cores from which the root systems were removed. Furthermore, the number of larvae from root systems correlated significantly with that from the surrounding soil. These results indicated that the former and much more convenient sampling unit can be used to estimate population developmental stage and possibly density, at least early in the season when these tests were done and young larvae predominated.  相似文献   

19.
A family of novel binary insecticidal crystal proteins, with activity against western corn rootworm, Diabrotica virgifera virgifera LeConte, was identified from Bacillus thuringiensis Berliner. A binary insecticidal crystal protein (bICP) from B. thuringiensis strain PS149B1 is composed of a 14-kDa protein (Cry34Abl) and a 44-kDaprotein (Cry35Ab1). These proteins have been co-expressed in transgenic maize plants, Zea mays L., and effectively control western corn rootworm larvae under field conditions. Laboratory experiments were conducted to better understand the contribution of each component protein to the in vivo activity of the bICP. The 14-kDa protein is active alone against southern corn rootworm, Diabrotica undecimpunctata howardi Barber, and was synergized by the 44-kDa protein. In mixtures, the concentration of the 14-kDa protein had a greater impact on efficacy than the 44-kDa component. Although both proteins are clearly required for maximal insecticidal activity, laboratory results did not support the formation of a stable, fixed-ratio complex of the two component proteins.  相似文献   

20.
The cultural practice of rotating corn, Zea mays L., with soybean, Glycine max (L.) Merrill, to manage larval injury by the western corn rootworm, Diabrotica virgifera virgifera LeConte, was used extensively throughout east central Illinois and northern Indiana until the mid-1990s. The effectiveness of this management tactic diminished due to a shift in the ovipositional behavior of the western corn rootworm. The variant western corn rootworm has since spread as far as northwestern Illinois, southern Wisconsin, southern Michigan, and eastern Ohio. The objective of this study was to evaluate the influence of four cropping systems on adult and egg densities of the western corn rootworm and to quantify the level of root injury in rotated corn after each system. The four cropping systems used included: 1) corn; 2) soybean; 3) double-cropped winter wheat, Triticum aestivum L., followed by soybean; and 4) winter wheat. Research trials were conducted near Monmouth (northwestern), DeKalb (northern), and Urbana (east central), IL, during 2003 and 2004. Results indicated variant western corn rootworm adults can be found in all four treatments at each location and consequently no crop was immune to oviposition or root injury by corn rootworm larvae in rotated corn the following season. Adults were found primarily in corn and soybean, whereas egg densities were greatest in corn plots in all three locations in both years of the study. Root injury by larvae was most abundant in corn following corn at all three sites. Of the four systems evaluated, the use of wheat demonstrated the most potential for preventing yield reducing levels of root injury in rotated corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号