首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.  相似文献   

2.
We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58(IPK), the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2alpha. P58(IPK) also inhibits PERK, an eIF2alpha kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58(IPK) to interact with and inhibit multiple eIF2alpha kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58(IPK) during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58(IPK-/-) mice, we demonstrated that the absence of P58(IPK) led to an increase in eIF2alpha phosphorylation and decreased influenza virus mRNA translation. The absence of P58(IPK) also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58(IPK) target, PKR, the trends were reversed-eIF2alpha phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58(IPK) also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2alpha phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2alpha. Taken together, our results support a model in which P58(IPK) regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.  相似文献   

3.
Cheng G  Feng Z  He B 《Journal of virology》2005,79(3):1379-1388
The gamma(1)34.5 protein of herpes simplex virus (HSV) plays a crucial role in virus infection. Although the double-stranded RNA-dependent protein kinase (PKR) is activated during HSV infection, the gamma(1)34.5 protein inhibits the activity of PKR by mediating dephosphorylation of the translation initiation factor eIF-2alpha. Here we show that HSV infection also induces phosphorylation of an endoplasmic reticulum (ER) resident kinase PERK, a hallmark of ER stress response. The virus-induced phosphorylation of PERK is blocked by cycloheximide but not by phosphonoacetic acid, suggesting that the accumulation of viral proteins in the ER is essential. Notably, the maximal phosphorylation of PERK is delayed in PKR+/+ cells compared to that seen in PKR-/- cells. Further analysis indicates that hyperphosphorylation of eIF-2alpha caused by HSV is greater in PKR+/+ cells than in PKR-/- cells. However, expression of the gamma(1)34.5 protein suppresses the ER stress response caused by virus, dithiothreitol, and thapsigargin as measured by global protein synthesis. Interestingly, the expression of GADD34 stimulated by HSV infection parallels the status of eIF-2alpha phosphorylation. Together, these observations suggest that regulation of eIF-2alpha phosphorylation by the gamma(1)34.5 protein is an efficient way to antagonize the inhibitory activity of PKR as well as PERK during productive infection.  相似文献   

4.
5.
Malfolded proteins in the endoplasmic reticulum (ER) inhibit translation initiation. This response is believed to be mediated by increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) and is hypothesized to reduce the work load imposed on the folding machinery during stress. Here we report that mutating the gene encoding the ER stress-activated eIF2alpha kinase PERK abolishes the phosphorylation of eIF2alpha in response to accumulation of malfolded proteins in the ER resulting in abnormally elevated protein synthesis and higher levels of ER stress. Mutant cells are markedly impaired in their ability to survive ER stress and inhibition of protein synthesis by cycloheximide treatment during ER stress ameliorates this impairment. PERK thus plays a major role in the ability of cells to adapt to ER stress.  相似文献   

6.
Inhibition of protein translation plays an important role in apoptosis. While double-stranded RNA-dependent protein kinase (PKR) is named as it is activated by double-stranded RNA produced by virus, its activation induces an inhibition of protein translation and apoptosis via the phosphorylation of the eukaryotic initiation factor 2alpha (eIF2alpha). PKR is also a stress kinase and its levels increase during ageing. Here we show that PKR activation and eIF2alpha phosphorylation play a significant role in apoptosis of neuroblastoma cells and primary neuronal cultures induced by the beta-amyloid (Abeta) peptides, the calcium ionophore A23187 and flavonoids. The phosphorylation of eIF2alpha and the number of apoptotic cells were enhanced in over-expressed wild-type PKR neuroblastoma cells exposed to Abeta peptide, while dominant-negative PKR reduced eIF2alpha phosphorylation and apoptosis induced by Abeta peptide. Primary cultured neurons from PKR knockout mice were also less sensitive to Abeta peptide toxicity. Activation of PKR and eIF2alpha pathway by Abeta peptide are triggered by an increase in intracellular calcium because the intracellular calcium chelator BAPTA-AM significantly reduced PKR phosphorylation. Taken together, these results reveal that PKR and eIF2alpha phosphorylation could be involved in the molecular signalling events leading to neuronal apoptosis and death and could be a new target in neuroprotection.  相似文献   

7.
8.
Hypoxia profoundly influences tumor development and response to therapy. While progress has been made in identifying individual gene products whose synthesis is altered under hypoxia, little is known about the mechanism by which hypoxia induces a global downregulation of protein synthesis. A critical step in the regulation of protein synthesis in response to stress is the phosphorylation of translation initiation factor eIF2alpha on Ser51, which leads to inhibition of new protein synthesis. Here we report that exposure of human diploid fibroblasts and transformed cells to hypoxia led to phosphorylation of eIF2alpha, a modification that was readily reversed upon reoxygenation. Expression of a transdominant, nonphosphorylatable mutant allele of eIF2alpha attenuated the repression of protein synthesis under hypoxia. The endoplasmic reticulum (ER)-resident eIF2alpha kinase PERK was hyperphosphorylated upon hypoxic stress, and overexpression of wild-type PERK increased the levels of hypoxia-induced phosphorylation of eIF2alpha. Cells stably expressing a dominant-negative PERK allele and mouse embryonic fibroblasts with a homozygous deletion of PERK exhibited attenuated phosphorylation of eIF2alpha and reduced inhibition of protein synthesis in response to hypoxia. PERK(-/-) mouse embryo fibroblasts failed to phosphorylate eIF2alpha and exhibited lower survival after prolonged exposure to hypoxia than did wild-type fibroblasts. These results indicate that adaptation of cells to hypoxic stress requires activation of PERK and phosphorylation of eIF2alpha and suggest that the mechanism of hypoxia-induced translational attenuation may be linked to ER stress and the unfolded-protein response.  相似文献   

9.
Eukaryotic cells have developed specific mechanisms to overcome environmental stress. Here we show that the Src homology 2/3 (SH2/SH3) domain-containing protein Nck-1 prevents the unfolded protein response normally induced by pharmacological endoplasmic reticulum (ER) stress agents. Overexpression of Nck-1 enhances protein translation, whereas it abrogates eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation and inhibition of translation in response to tunicamycin or thapsigargin treatment. Nck-1 overexpression also attenuates induction of the ER chaperone, the immunoglobulin heavy chain-binding protein (BiP), and impairs cell survival in response to thapsigargin. We provided evidence that in these conditions, the effects of Nck on the unfolded protein response (UPR) involve its second SH3 domain and a calyculin A-sensitive phosphatase activity. In addition, we demonstrated that protein translation is reduced in mouse embryonic fibroblasts lacking both Nck isoforms and is enhanced in similar cells expressing high levels of Nck-1. In these various mouse embryonic fibroblasts, we also provided evidence that Nck modulates the activation of the ER resident eIF2alpha kinase PERK and consequently the phosphorylation of eIF2alpha on Ser-51 in response to stress. Our study establishes that Nck is required for optimal protein translation and demonstrates that, in addition to its adaptor function in mediating signaling from the plasma membrane, Nck also mediates signaling from the ER membrane compartment.  相似文献   

10.
FAD mutations in presenilin-1 (PS1) cause attenuation of the induction of the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP under ER stress, due to disturbed function of IRE1, the sensor for accumulation of unfolded protein in the ER lumen. PERK, an ER-resident transmembrane protein kinase, is also a sensor for the unfolded protein response (UPR), causing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) to inhibit translation initiation. Here, we report that the FAD mutant PS1 disturbs the UPR by attenuating both the activation of PERK and the phosphorylation of eIF2alpha. Consistent with the results of a disturbed UPR, inhibition of protein synthesis under ER stress was impaired in cells expressing PS1 mutants. These results suggest that mutant PS1 impedes general translational attenuation regulated by PERK and eIF2alpha, resulting in an increased load of newly synthesized proteins into the ER and subsequently increasing vulnerability to ER stress.  相似文献   

11.
The parasitic protozoan Leishmania is the etiological agent of human leishmaniasis worldwide. It undergoes cellular differentiation from the sandfly promastigote form into amastigotes within mammalian macrophages, a process that is essential for its intracellular survival. Here, we characterized the Leishmania infantum PERK eIF2alpha kinase homologue and addressed its role in the parasite's cytodifferentiation. We show that Leishmania PERK is an endoplasmic reticulum (ER) transmembrane protein that largely colocalizes with the ER BiP chaperone. The Leishmania PERK catalytic kinase domain undergoes autohyperphosphorylation and phosphorylates the translation initiation factor 2-alpha subunit (eIF2alpha) in vitro at threonine 166. We also report that PERK is post-translationally regulated specifically in the intracellular stage of the parasite or under ER stress, most likely through extensive autohyperphosphorylation. We have generated a PERK dominant negative mutant overexpressing a truncated PERK protein lacking the N-terminal luminal domain and showed that this mutant is impaired in eIF2alpha phosphorylation in response to ER stress or during amastigote differentiation. Most importantly, we showed that lack of eIF2alpha phosphorylation markedly delays the Leishmania differentiation process towards amastigote forms both in parasites grown axenically or within macrophages. These data highlight the importance of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation in the intracellular development of Leishmania.  相似文献   

12.
Lee ES  Yoon CH  Kim YS  Bae YS 《FEBS letters》2007,581(22):4325-4332
Sustained ER stress leads to apoptosis. However, the exact mechanism still remains to be elucidated. Here, we demonstrate that the double strand RNA-dependent protein kinase (PKR) is involved in the ER stress-mediated signaling pathway. ER stress rapidly activated PKR, inducing the phosphorylation of eIF2alpha, followed by the activation of the ATF4/CHOP pathway. ER-stress-mediated eIF2alpha/ATF4/CHOP signaling and associated cell death was markedly reduced by PKR knockdown. We also found that PKR activation was mediated by PACT, the expression of which was elevated by ER-stress. These results indicate that the ER-stress-mediated eIF2alpha/ATF4/CHOP/cell death pathway is, to some degree, dependent on PACT-mediated PKR activation apart from the PERK pathway.  相似文献   

13.
The endoplasmic reticulum (ER)-resident protein kinase PERK attenuates protein synthesis in response to ER stress through the phosphorylation of translation initiation factor eIF2alpha at serine 51. ER stress induces PERK autophosphorylation at several serine/threonine residues, a process that is required for kinase activation and phosphorylation of eIF2alpha. Herein, we demonstrate that PERK also possesses tyrosine kinase activity. Specifically, we show that PERK is capable of autophosphorylating on tyrosine residues in vitro and in vivo. We further show that tyrosine 615, which is embedded in a highly conserved region of the kinase domain of PERK, is essential for autocatalytic activity. That is, mutation of Tyr-615 to phenylalanine compromises the autophosphorylation capacity of PERK and the phosphorylation of eIF2alpha in vitro and in vivo. The Y615F mutation also impairs the ability of PERK to induce translation of ATF4. Immunoblot analyses with a phosphospecific antibody confirm the phosphorylation of PERK at Tyr-615 both in vitro and in vivo. Thus, our data classify PERK as a dual specificity kinase whose regulation by tyrosine phosphorylation contributes to its optimal activation in response to ER stress.  相似文献   

14.
Initiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs. Three stresses were studied that cause the phosphorylation of the translation initiation factor, eIF2alpha, by activating specific kinases: (i) amino acid starvation, which activates GCN2; (ii) endoplasmic reticulum (ER) stress, which activates PKR-like ER kinase, PERK kinase; and (iii) double-stranded RNA, which activates double-stranded RNA-dependent protein kinase (PKR) by mimicking viral infection. Amino acid starvation and ER stress caused transient phosphorylation of eIF2alpha during the first hour of treatment, whereas double-stranded RNA caused a sustained phosphorylation of eIF2alpha after 2 h. The effects of these treatments on IRES-mediated initiation were investigated using bicistronic mRNA expression vectors. No effect was seen for the IRESs from the mRNAs for the chaperone BiP and the protein kinase Pim-1. In contrast, translation mediated by the IRESs from the cationic amino acid transporter, cat-1, and of the cricket paralysis virus intergenic region, were stimulated 3- to 10-fold by all three treatments. eIF2alpha phosphorylation was required for the response because inactivation of phosphorylation prevented the stimulation. It is concluded that cellular stress can stimulate translation from some cellular IRESs via a mechanism that requires the phosphorylation of eIF2alpha. Moreover, there are distinct regulatory patterns for different cellular mRNAs that contain IRESs within their 5'-untranslated regions.  相似文献   

15.
16.
The alpha-subunit of eukaryotic initiation factor eIF2 is a preferred substrate for the double-stranded RNA-activated protein kinase, PKR. Phosphorylation of eIF2alpha converts the factor from a substrate into a competitive inhibitor of the guanine nucleotide exchange factor, eIF2B, leading to a decline in mRNA translation. Early studies provided evidence implicating PKR as the kinase that phosphorylates eIF2alpha under conditions of cell stress such as the accumulation of misfolded proteins in the lumen of the endoplasmic reticulum, i.e., the unfolded protein response (UPR). However, the recent identification of a trans-microsomal membrane eIF2alpha kinase, termed PEK or PERK, suggests that this kinase, and not PKR, might be the kinase that is activated by misfolded protein accumulation. Similarly, genetic studies in yeast provide compelling evidence that a kinase termed GCN2 phosphorylates eIF2alpha in response to amino acid deprivation. However, no direct evidence showing activation of the mammalian homologue of GCN2 by amino acid deprivation has been reported. In the present study, we find that in fibroblasts treated with agents that promote the UPR, protein synthesis is inhibited as a result of a decrease in eIF2B activity. Furthermore, the reduction in eIF2B activity is associated with enhanced phosphorylation of eIF2alpha. Importantly, the magnitude of the change in each parameter is identical in wildtype cells and in fibroblasts containing a chromosomal deletion in the PKR gene (PKR-KO cells). In a similar manner, we find that during amino acid deprivation the inhibition of protein synthesis and extent of increase in eIF2alpha phosphorylation are identical in wildtype and PKR-KO cells. Overall, the results show that PKR is not required for increased eIF2alpha phosphorylation or inhibition of protein synthesis under conditions promoting the UPR or in response to amino acid deprivation.  相似文献   

17.
Picornavirus infection alters the endoplasmic reticulum (ER) membrane but it is unclear whether this induces ER stress. Infection of rhabdomyosarcoma cells with enterovirus 71 (EV71), a picornavirus, caused overexpression of the ER‐resident chaperone proteins, BiP and calreticulin, and phosphorylation of eIF2α, but infection with UV‐inactivated virus did not, indicating that ER stress was induced by viral replication and not by viral attachment or entry. Silencing (si)RNA knockdown demonstrated that phosphorylation of eIF2α was dependent on PKR: eIF2α phosphorylation was reduced by siPKR but not by siPERK. We provided evidence showing that PERK is upstream of PKR and is thus able to negatively regulate the PKR‐eIF2α pathway. Pulse‐chase experiments revealed that EV71 infection inhibited translation and activation of ATF6. Expression of BiP at the protein level was activated by a virus‐dependent, ATF6‐independent mechanism. EV71 upregulated XBP1 mRNA level, but neither IRE1‐mediated XBP1 splicing nor its active spliced protein was detected, and its downstream gene, EDEM, was not activated. Epigenetic BiP overexpression alleviated EV71‐induced ER stress and reduced viral protein expression and replication. Our results suggest that EV71 infection induces ER stress but modifies the outcome to assist viral replication.  相似文献   

18.
Cyclin D1 plays a critical role in controlling the G(1)/S transition via the regulation of cyclin-dependent kinase activity. Several studies have indicated that cyclin D1 translation is decreased upon activation of the eukaryotic initiation factor 2alpha (eIF2alpha) kinases. We examined the effect of activation of the eIF2alpha kinases PKR and PKR-like endoplasmic reticulum kinase (PERK) on cyclin D1 protein levels and translation and determined that cyclin D1 protein levels decrease upon the induction of PKR and PERK catalytic activity but that this decrease is not due to translation. Inhibition of the 26 S proteasome with MG132 rescued cyclin D1 protein levels, indicating that rather than inhibiting translation, PKR and PERK act to increase cyclin D1 degradation. Interestingly, this effect still requires eIF2alpha phosphorylation at serine 51, as cyclin D1 remains unaffected in cells containing a non-phosphorylatable form of the protein. This proteasome-dependent degradation of cyclin D1 requires an intact ubiquitination pathway, although the ubiquitination of cyclin D1 is not itself affected. Furthermore, this degradation is independent of phosphorylation of cyclin D1 at threonine 286, which is mediated by the glycogen synthase kinase 3beta and mitogen-activated protein kinase pathways as described in previous studies. Our study reveals a novel functional cross-talk between eIF2alpha phosphorylation and the proteasomal degradation of cyclin D1 and that this degradation is dependent upon eIF2alpha phosphorylation during short, but not prolonged, periods of stress.  相似文献   

19.
Regulated phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) by the endoplasmic reticulum (ER) stress-activated protein kinase PERK modulates protein synthesis and couples the production of ER client proteins with the organelle's capacity to fold and process them. PERK activation by ER stress is known to involve transautophosphorylation, which decorates its unusually long kinase insert loop with multiple phosphoserine and phosphothreonine residues. We report that PERK activation and phosphorylation selectively enhance its affinity for the nonphosphorylated eIF2 complex. This switch correlates with a marked change to the protease sensitivity pattern, which is indicative of a major conformational change in the PERK kinase domain upon activation. Although it is dispensable for catalytic activity, PERK's kinase insert loop is required for substrate binding and for eIF2alpha phosphorylation in vivo. Our findings suggest a novel mechanism for eIF2 recruitment by activated PERK and for unidirectional substrate flow in the phosphorylation reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号