首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of red (R) and far-red (FR) light on stem elongation and indole-3-acetic acid (IAA) levels was examined in dwarf and tall Pisum sativum L. seedlings. Red light reduced the extension-growth rate of etiolated seedlings by 70–90% after 3 h, and this inhibition was reversible by FR. Inhibition occurred throughout the growing zone. After 3 h of R, the level of extractable IAA in whole stem sections from the growing zone of etiolated plants either increased or showed no change. By contrast, extractable IAA from epidermal peels consistently decreased 3 h after R treatments. Decreases of 40% were observed for epidermal peels from the top 1 cm of tall plants receiving 3 h R. Brief R treatments resulted in smaller decreases in epidermal IAA levels and these decreases were not as great when FR followed R. In lightgrown plants, end-of-day FR stimulated growth during the following dark period in a photoreversible manner. The uppermost 1 cm of expanding third internodes was most responsive to the FR. Extractable IAA from epidermal peels from the upper 1 cm of third internodes increased by 30% or more 5 h after FR. When R followed the FR the increases were smaller. Levels of IAA in whole stem sections did not change and were twofold greater than in dark-grown plants. In both dark- and light-grown tall plants, IAA levels were lower in epidermal peels than in whole stem segments. These results provide evidence that IAA is compartmentalized at the tissue level within the growing stem and that phytochrome regulation of stem elongation rates may be partly based on modulating the level of IAA within the epidermis.Abbreviations IAA indole-3-acetic acid - R red light - FR farred light We thank Yu-Xian Zhu for helping to develop methods for IAA analysis, James Reid for supplying the genetic lines of Pisum and Richard Cyr for the use of microscopy equipment. This work was supported by NSF grant DCB-8801880 and by Hatch funds from the College of Agriculture and Life Sciences at Cornell University. The gas chromatograph-mass spectrometer was funded by NSF grant DMB-8505974 and funds from the College of Agriculture and Life Sciences at Cornell University. A preliminary report of some of these experiments has appeared in Plant Growth Substances, 1991 (Behringer et al. 1992 b).  相似文献   

2.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid.  相似文献   

3.
《Phytochemistry》1986,25(2):299-302
Studies have been carried out on the compartmentation ofindole-3-acetic acid (IAA) and related indoles in Pisum sativum cv. Meteor. By the use of HPLC, GC and combined GC-MS, data were obtained demonstrating the presence of IAA and indole-3-ethanol (IEt) in light-grown pea seedlings. HPLC, GC and GC-MS analyses also confirmed IAA as an endogenous constituent in pea chloroplast fractions while HPLC and GC provided strong evidence for the presence of IEt in chloroplast preparations.  相似文献   

4.
A. Ritter  E. Wagner  M. G. Holmes 《Planta》1981,153(6):556-560
The spectral control of hypocotyl elongation in light-grown Chenopodium rubrum L. seedlings has been studied. The results showed that although the seedlings responded to changes in the quantity of combined red and far-red radiation, they were also very sensitive to changes in the quantity of blue radiation reaching the plant. Altering the proportion of red: far-red radiation in broad waveband white light caused marked differences in hypocotyl extension. Comparison of the responses of green and chlorophyll-free seedlings indicated no qualitative difference in the response to any of the light sources used, although photosynthetically incompetent plants were more sensitive to all wavelengths. Blue light was found to act primarily of a photoreceptor which is different from phytochrome. It is concluded that hypocotyl extension rate in vegetation shade is photoregulated by the quantity of blue light and the proportion of red: far-red radiation. In neutral shade, such as that caused by stones or overlying soil, hypocotyl extension appears to be regulated primarily by the quantity of light in the blue waveband and secondarily by the quantity of light in the red and far-red wavebands.Abbreviations B blue - FR far-red - k 1, k 2 rate constants for photoconverison of Pr to Pfr and Pfr to Pr, respective - k 1/k 1 +k 2= phytochrome photoequilibrium - k 1 +k 2= phytochrome cycling rate - Pr=R absorbing form of phytochrome - Pfr=FR absorbing form of phytochrome - Ptot Pr+Pfr - PAR photosynthetically active radiation = 400–700 nm - R red - WL white light  相似文献   

5.
This study describes the first identification of plant enzyme activity catalyzing the conjugation of indole-3-acetic acid to amino acids. Enzymatic synthesis of indole-3-acetylaspartate (IAA-Asp) by a crude enzyme preparation from immature seeds of pea (Pisum sativum) was observed. The reaction yielded a product with the same Rf as IAA-Asp standard after thin layer chromatography. The identity of IAA-Asp was verified by HPLC analysis. IAA-Asp formation was dependent on ATP and Mg2+, and was linear during a 60 min period. The enzyme preparation obtained after poly(ethylene glycol) 6000 fractionation showed optimum activity at pH 8.0, and the temperature optimum for IAA-Asp synthesis was 30 degrees C.  相似文献   

6.
Indole-3-acetic acid (IAA) strongly enhanced rooting of etiolated pea epicotyl cuttings while gibberellic acid (GA3) enhanced rooting only slightly. The promoting effects of the hormones appeared not until 14 d after the onset of treatment. When GA3 and IAA were applied together, the initiation of rooting started already after 6 d after onset of treatment. It is suggested that gibberellin plays an important role, in combination with auxin, in the initiation of root formation in Pisum cuttings.Abbreviations IAA Indole-3-acetic acid - GA3 Gibberellic acid  相似文献   

7.
Elongation of excised loblolly pine ( Pinus taeda L.) hypocotyls was promoted by indole-3-acetic acid and the fungal metabolite, fusicoccin. Gibberellic acid, kinetin, zeatin, or zeatin-riboside were either without effect or promoted elongation only slightly. The most auxin-responsive tissue was just below the cotyledonary node, and elongation was confined to sections excised from the upper 2 cm of the hypocotyl. Indole-3-acetic acid induced elongation rates in the hypocotyl sections equal to those of intact hypocotyls when the sections were excised from young seedlings. Elongation rates decreased in intact hypocotyls before the excised tissues lost responsiveness to the auxin. Hypocotyl elongation in loblolly pine is discussed in relation to hypocotyl elongation in angiosperm species.  相似文献   

8.
A sequential indole-3-acetic acid (IAA)-zeatin treatment was applied to Pisum sativum hypocotyl explants, resulting in shoot formation from 50% of the explants. Shoots were easily rooted and transplantable plants could be obtained in 3 months. The method has been applicable to the 5 cultivars tested. Histological examination of explants suggests the shoots to be of de novo origin, which would make the system suitable for transformation experiments.  相似文献   

9.
While indole-3-butyric acid (IBA) has been confirmed to be an endogenous form of auxin in peas, and may occur in the shoot tip in a level higher than that of indole-3-acetic acid (IAA), the physiological significance of IBA in plants remains unclear. Recent evidence suggests that endogenous IAA may play an important role in controlling stem elongation in peas. To analyze the potential contribution of IBA to stem growth we determined the effectiveness of exogenous IBA in stimulating stem elongation in intact light-grown pea seedlings. Aqueous IBA, directly applied to the growing internodes via a cotton wick, was found to be nearly as effective as IAA in inducing stem elongation, even though the action of IBA appeared to be slower than that of IAA. Apically applied IBA was able to stimulate elongation of the subtending internodes, indicating that IBA is transported downwards in the stem tissue. The profiles of growth kinetics and distribution suggest that the basipetal transport of IBA in the intact plant stem is slower than that of IAA. Following withdrawal of an application, the residual effect of IBA in growth stimulation was markedly stronger than that of IAA, which may support the notion that IBA conjugates can be a better source of free auxin through hydrolysis than IAA conjugates. It is suggested that IBA may serve as a physiologically active form of auxin in contributing to stem elongation in intact plants.  相似文献   

10.
D. A. Morris 《Planta》1977,136(1):91-96
Dwarf pea plants bearing two cotyledonary shoots were obtained by removing the epicotyl shortly after germination, and the patterns of distribution of 14C in these plants was investigated following the application of [14C]IAA to the apex of one shoot. Basipetal transport to the root system occurred, but in none of the experiments was 14C ever detected in the unlabelled shoot even after transport periods of up to 48 h. This was true both of plants with two equal growing shoots and of plants in which one shoot had become correlatively inhibited by the other, and in the latter case applied whether the dominant or subordinate shoot was labelled. In contrast, when [14C]IAA was applied to a mature foliage leaf of one shoot transfer of 14C to the other shoot took place, although the amount transported was always low. Transport of 14C from the apex of a subordinate shoot on plants bearing one growing and one inhibited shoot was severely restricted compared with the transport from the dominant shoot apex, and in some individual plants no transport at all was detected. Removal of the dominant shoot apex rapidly restored the capacity of the subordinate shoot to transport apically-applied [14C]IAA, and at the same time led to rapid cambial development and secondary vascular differentiation in the previously inhibited shoot. Applications of 1% unlabelled IAA in lanolin to the decapitated dominant shoot maintained the inhibition of cambial development in the subordinate shoot and its reduced capacity for auxin transport. These results are discussed in relation to the polarity of auxin transport in intact plants and the mechanism of correlative inhibition.Abbreviations IAA Indol-3-yl-acetic acid - TIBA 2,3,5-triiodobenzoic acid - 2,4D 2,4-dichlorophenoxyacetic acid - IAAsp Indol-3-yl-acetyl aspartic acid  相似文献   

11.
David A. Brummell  J. L. Hall 《Planta》1980,150(5):371-379
The effects of peeling and wounding on the indole-3-acetic acid (IAA) and fusicoccin (FC) growth response of etiolated Pisum sativum L. cv. Alaska stem tissue were examined. Over a 5 h growth period, peeling was found to virtually eliminate the IAA response, but about 30% of the FC response remained. In contrast, unpeeled segments wounded with six vertical slits exhibited significant responses to both IAA and FC, indicating that peeling does not act by damaging the tissue. Microscopy showed that the epidermis was removed intact and that the underlying tissue was essentially undamaged. Neither the addition of 2% sucrose to the incubation medium nor the use of a range of IAA concentrations down to 10-8 M restored IAA-induced growth in peeled segments, suggesting that lack of osmotic solutes and supra-optimal uptake of IAA were not important factors over this time period. It is concluded that, although the possibility remains that peeling merely allows leakage of hydrogen ions into the medium, it seems more likely that peeling off the epidermis removes the auxin responsive tissue.Abbreviations IAA indole-3-acetic acid - FC fusicoccin  相似文献   

12.
Germinating seed ofDalbergia dolichopetala converted both [2H5]l-tryptophan and [2H5]indole-3-ethanol to [2H5]indole-3-acetic acid (IAA). Metabolism of [2-14C]IAA resulted in the production of indole-3-acetylaspartic acid (IAAsp), as well as several unidentified components, referred to as metabolites I, II, IV and V. Re-application of [14C]IAAsp to the germinating seed led to the accumulation of the polar, water-soluble compound, metabolite V, as the major metabolite, together with a small amount of IAA. Metabolites I, II and IV were not detected, nor were these compounds associated with the metabolism of [2-14C]IAA by shoots and excised cotyledons and roots from 26-d-oldD. dolichopetala seedlings. Both shoots and cotyledons converted IAA to IAAsp and metabolite V, while IAAsp was the only metabolite detected in extracts from excised roots. The available evidence indicates that inDalbergia, and other species, IAAsp may not act as a storage product that can be hydrolysed to provide the plant with a ready supply of IAA.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting - IAA indole-3-acetic acid - IAAsp indole-3-acetylaspartic acid - IAlnos 2-O-indole-3-acetyl-myo-inositol - IEt indole-3-ethanol  相似文献   

13.
The effect of far red light on the light-grown bean hypocotyland its interaction with indole-3-acetic acid (IAA) were studied.Elongation of younger zones of the hypocotyl was inhibited butthat of older zones was promoted by far red light. This wascontrolled by phytochrome. Both the hook and shank portionscould receive far red light and its effect could be transmittedto either portions of the hypocotyl. When IAA was applied to the upper cut surface of the hypocotylunit, elongation of the shank portion was promoted even withoutfar red irradiation. IAA did not change the aspect of the growthcurves but amplified the elongation of each zone. When IAA wasapplied to each zone of the shank portion, elongation of zonesolder than the treated one was promoted but that of youngerzones was inhibited. This effect was emphasized by far red light.When IAA was applied to the older shank portion, elongationof the treated zone was synergistically promoted by IAA andfar red light, but when applied to the elbow or younger shankportion, far red light completely nullified the promoting effectof IAA. (Received October 1, 1979; )  相似文献   

14.
The transport of [14C]phenylacetic acid (PAA) in intact plants and stem segments of light-grown pea (Pisum sativum L. cv. Alderman) plants was investigated and compared with the transport of [14C]indiol-3yl-acetic acid (IAA). Although PAA was readily taken up by apical tissues, unlike IAA it did not undergo long-distance transport in the stem. The absence of PAA export from the apex was shown not to be the consequence of its failure to be taken up or of its metabolism. Only a weak diffusive movement of PAA was observed in isolated stem segments which readily transported IAA. When [1-14C]PAA was applied to a mature foliage leaf in light, only 5.4% of the 14C recovered in ethanol extracts (89.6% of applied 14C) had been exported from the leaf after 6.0 h. When applied to the corresponding leaf, [14C]sucrose was readily exported (46.4% of the total recovered ethanol-soluble 14C after 6.0 h). [1-14C]phenylacetic acid applied to the root system was readily taken up but, after 5.0 h, 99.3% of the recovered 14C was still in the root system.When applied to the stem of intact plants (either in lanolin at 10 mg·g-1, or as a 10-4 M solution), unlabelled PAA blocked the transport through the stem of [1-14C]IAA applied to the apical bud, and caused IAA to accumulate in the PAA-treated region of the stem. Applications of PAA to the stem also inhibited the basipetal polar transport of [1-14C]IAA in isolated stem segments. These results are consistent with recent observations (C.F. Johnson and D.A. Morris, 1987, Planta 172, 400–407) that no carriers for PAA occur in the plasma membrane of the light-grown pea stem, but that PAA can inhibit the carrier-mediated efflux of IAA from cells. The possible functions of endogenous PAA are discussed and its is suggested that an important role of the compound may be to modulate the polar transport and-or accumulation by cells of IAA.Abbreviations IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - IIBA 2,3,5-triiodobenzoic acid  相似文献   

15.
Oxindole-3-acetic acid (OxIAA) has been identified in germinating seeds of Scots pine (Pinus sylvestris) using gas chromatography-mass spectrometry. Seeds germinated for 5 d contained 2.7 ng OxIAA·g-1 (dry weight) whereas ungerminated seeds contained 0.2 ng·g-1. Isotopically labelled OxIAA was formed in seeds incubated with [1-14C]-, [2-14C]- or [2H5]indole-3-acetic acid.Abbreviations DDC sodium diethyldithiocarbamate - GC gas chromatography - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - MS mass spectrometry - OxIAA oxindole-3-acetic acid - PVP polyvinylpyrrolidone - TMS trimethylsilyl  相似文献   

16.
Phenylacetic acid (PAA), a naturally-occurring acidic plant growth substance, was readily taken up by pea (Pisum sativum L. cv. Alderman) stem segments from buffered external solutions by a pH-dependent, non-mediated diffusion. Net uptake from a 0.2 M solution at pH 4.5 proceeded at a constant rate for at least 60 min and, up to approx. 100 M, the rate of uptake was directly proportional to the external concentration of the compound. The net rate of uptake of PAA was not affected by the inclusion of indol-3yl-acetic acid (IAA) in the uptake medium (up to approx. 30 M) and, unlike the net uptake of IAA, was not stimulated by N-1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid. At an external concentration of 0.2 M and pH 4.5, the net rate of uptake of PAA was about twice that of IAA. It was concluded that the uptake of PAA did not involve the participation of carriers and that PAA was not a transported substrate for the carriers involved in the uptake and polar transport of IAA. Nevertheless, the inclusion of 3–100 M unlabelled PAA in the external medium greatly stimulated the uptake by pea stem segments of [1-14C]IAA (external concentration 0.2 M). It was concluded that whilst PAA was not a transported substrate for the NPA-sensitive IAA efflux carrier, it interacted with this carrier to inhibit IAA efflux from cells. Over the concentration range 3–100 M, PAA progressively reduced the stimulatory effect of NPA on IAA uptake, indicating that PAA also inhibited carrier-mediated uptake of IAA. The consequences of these observations for the regulation of polar auxin transport are discussed.Abbreviations IAA indol-3yl-acetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

17.
Indole-3-acetic acid (IAA) and gibberellic acid (GA3) enhanced the formation of roots on the stem cuttings of Abelmoschus esculentus. The effect increased considerably when both IAA and GA3 were applied together.  相似文献   

18.
Correlatively inhibited pea shoots (Pisum sativum L.) did not transport apically applied 14C-labelled indol-3yl-acetic acid ([14C]IAA), and polar IAA transport did not occur in internodal segments cut from these shoots. Polar transport in shoots and segments recovered within 24 h of removing the dominant shoot apex. Decapitation of growing shoots also resulted in the loss of polar transport in segments from internodes subtending the apex. This loss was prevented by apical applications of unlabelled IAA, or by low temperatures (approx. 2° C) after decapitation. Rates of net uptake of [14C]IAA by 2-mm segments cut from subordinate or decapitated shoots were the same as those in segments cut from dominant or growing shoots. In both cases net uptake was stimulated to the same extent by competing unlabelled IAA and by N-1-naphthylphthalamic acid. Uptake of the pH probe [14C]-5,5-dimethyloxazolidine-2,4-dione from unbuffered solutions was the same in segments from both types of shoot. Patterns of [14C]IAA metabolism in shoots in which polar transport had ceased were the same as those in shoots capable of polar transport. The reversible loss of polar IAA transport in these systems, therefore, was not the result of loss or inactivation of specific IAA efflux carriers, loss of ability of cells to maintain transmembrane pH gradients, or the result of a change in IAA metabolism. Furthermore, in tissues incapable of polar transport, no evidence was found for the occurrence of inhibitors of IAA uptake or efflux. Evidence is cited to support the possibility that the reversible loss of polar auxin transport is the result of a gradual randomization of effluxcarrier distribution in the plasma membrane following withdrawal of an apical auxin supply and that the recovery of polar transport involves reestablishment of effluxcarrier asymmetry under the influence of vectorial gradients in auxin concentration.Abbreviations DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid This work was supported by grant no. GR/D/08760 from the U.K. Science and Engineering Research Council. We thank Mrs. R.P. Bell for technical assistance.  相似文献   

19.
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA.  相似文献   

20.
The transport of exogenous indol-3yl-acetic acid (IAA) from the apical tissues of intact, light-grown pea (Pisum sativum L. cv. Alderman) shoots exhibited properties identical to those associated with polar transport in isolated shoot segments. Transport in the stem of apically applied [1-14C]-or [5-3H]IAA occurred at velocities (approx. 8–15 mm·h-1) characteristic of polar transport. Following pulse-labelling, IAA drained from distal tissues after passage of a pulse and the rate characteristics of a pulse were not affected by chases of unlabelled IAA. However, transport of [1-14C]IAA was inhibited through a localised region of the stem pretreated with a high concentration of unlabelled IAA or with the synthetic auxins 1-napthaleneacetic acid and 2,4-dichlorophenoxyacetic acid, and label accumulated in more distal tissues. Transport of [1-14C]IAA was also completely prevented through regions of the intact stem treated with N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid.Export of IAA from the apical bud into the stem increased with total concentration of IAA applied (labelled+unlabelled) but approached saturation at high concentrations (834 mmol·m-3). Transport velocity increased with concentration up to 83 mmol·m-3 IAA but fell again with further increase in concentration.Stem segments (2 mm) cut from intact plants transporting apically applied [1-14C]IAA effluxed 93% of their initial radioactivity into buffer (pH 7.0) in 90 min. The half-time for efflux increased from 32.5 to 103.9 min when 3 mmol·m-3 NPA was included in the efflux medium. Long (30 mm) stem sections cut from immediately below an apical bud 3.0 h after the apical application of [1-14C]IAA effluxed IAA when their basal ends, but not their apical ends, were immersed in buffer (pH 7.0). Addition of 3 mmol·m-3 NPA to the external medium completely prevented this basal efflux.These results support the view that the slow long-distance transport of IAA from the intact shoot apex occurs by polar cell-to-cell transport and that it is mediated by the components of IAA transmembrane transport predicted by the chemiosmotic polar diffusion theory.Abbreviations IAA indol-3yl-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号