首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kojima N  Seino K  Sato Y  Mizuochi T 《FEBS letters》2002,517(1-3):32-36
The present study involved comparison of adhesion of Helicobacter pylori KH202 to immobilized Le(b)-oligosaccharide carried on different carriers, i.e. Leb-oligosaccharide conjugated with polyacrylamide, bovine serum albumin, and dipalmitoylphosphatidylethanolamine (Le(b)-PAA, Le(b)-BSA, and Le(b)-DPPE). All of the Le(b)-oligosaccharide-carrying neoglycoconjugates served as ligands for H. pylori. However, H. pylori required 10-fold and 100-fold quantities of Le(b)-antigen to adhere to Le(b)-PAA and to Le(b)-DPPE in comparison to the quantity of Le(b)-antigen needed to adhere to Le(b)-BSA, respectively. H. pylori adhesion to Le(b)-PAA and Le(b)-DPPE was clearly inhibited by Le(b)-oligosaccharide, but adhesion to Le(b)-BSA was hardly inhibited by the oligosaccharide. Therefore, the carbohydrate carrier affects the affinity of H. pylori KH202 toward Le(b)-antigen, although the bacteria recognize Le(b)-antigen regardless of the carbohydrate carrier.  相似文献   

2.
Moran AP 《Carbohydrate research》2008,343(12):1952-1965
Helicobacter pylori is a prevalent bacterial, gastroduodenal pathogen of humans that can express Lewis (Le) and related antigens in the O-chains of its surface lipopolysaccharide. The O-chains of H. pylori are commonly composed of internal Le(x) units with terminal Le(x) or Le(y) units or, in some strains, with additional units of Le(a), Le(b), Le(c), sialyl-Le(x) and H-1 antigens, as well as blood groups A and B, thereby producing a mosaicism of antigenic units expressed. The genetic determination of the Le antigen biosynthetic pathways in H. pylori has been studied, and despite striking functional similarity, low sequence homology occurs between the bacterial and mammalian alpha(1,3/4)- and alpha(1,2)-fucosyltransferases. Factors affecting Le antigen expression in H. pylori, that can influence the biological impact of this molecular mimicry, include regulation of fucosyltransferase genes through slipped-strand mispairing, the activity and expression levels of the functional enzymes, the preferences of the expressed enzyme for distinctive acceptor molecules and the availability of activated sugar intermediates. Le mimicry was initially implicated in immune evasion and gastric adaptation by the bacterium, but more recent studies show a role in gastric colonization and bacterial adhesion with galectin-3 identified as the gastric receptor for polymeric Le(x) on the bacterium. From the host defence aspect, innate immune recognition of H. pylori by surfactant protein D is influenced by the extent of LPS fucosylation. Furthermore, Le antigen expression affects both the inflammatory response and T-cell polarization that develops after infection. Although controversial, evidence suggests that long-term H. pylori infection can induce autoreactive anti-Le antibodies cross-reacting with the gastric mucosa, in part leading to the development of gastric atrophy. Thus, Le antigen expression and fucosylation in H. pylori have multiple biological effects on pathogenesis and disease outcome.  相似文献   

3.
The discovery, biology, and drug development of sialyl Lea and sialyl Lex   总被引:14,自引:0,他引:14  
The discoveries of sialylated, fucosylated lacto-, and neolacto-type carbohydrate structures were accomplished with the aid of analytical methods and monoclonal antibodies such as the immunostaining of thin layer chromatograms. Based on the use of such antibodies, these structures, notably sialyl Le(a) and sialyl Le(x), were demonstrated to be highly expressed in many malignant cancers. A diagnostic assay using one of these antibodies (CA19-9) is now established as one of the more commonly used assays for pancreatic and gastrointestinal cancers worldwide. Upon further study, several laboratories have demonstrated that the level of expression of these carbohydrate tumor markers is also positively correlated with patient survival and is a prognostic indicator of metastatic disease. Concurrent with this finding, both sialyl Le(a) and sialyl Le(x) were shown to bind to a family of carbohydrate-binding proteins involved in the extravasation of cells from the bloodstream, called the selectins. Thus, sialyl Le(a) and sialyl Le(x) expressed on cell surfaces play functional roles in medical conditions that require extravasation of cells from the bloodstream which include a wide range of inflammatory diseases and cancer metastasis. Many studies have confirmed the function of sialyl Le(a) and sialyl Le(x) in animal models of these diseases and the inhibition of binding of sialyl Le(a) and sialyl Le(x) to the selectins is a validated drug target in the pharmaceutical industry. Thus, a new class of drugs, arising from the field of glycobiology, is based on the rational design of small molecule drugs that mimic the structures sialyl Le(a) and sialyl Le(x) and can potently inhibit their functional binding to the selectins.  相似文献   

4.
Many microbes bind and adhere via adhesins to host cell carbohydrates as an initial step for infection. Therefore, cell lines expressing Lewis b (Le(b)) determinants were generated as a potential model system for Helicobacter pylori colonization and infection, and their expression of blood group Lewis determinants was characterized. CHO-K1 cells were stably transfected with selected glycosyltransferase cDNAs, and two Le(b) positive clones, 1C5 and 2C2, were identified. Expression of Lewis (Le(a), Le(b), Le(x), and Le(y)) determinants was analyzed by flow cytometry of intact cells, SDS-PAGE/Western blot of solubilized glycoproteins, and thin layer chromatography immunostaining of isolated glycolipids (GL). Binding of H. pylori to cells was examined by microscopy and quantified. Flow cytometry showed that 1C5 and 2C2 were Le(a) and Le(b) positive. 1C5 expressed Le(b) on O-linked, but not N-linked, glycans and only weakly on GLs. In contrast, 2C2 expressed Le(b) on N-, O-glycans, and GLs. Furthermore, both clones expressed Le(a) on N- and O-glycans but not on GLs. 2C2, but not 1C5, stained positively for Le(y) on N-linked glycans and GLs. Both clones, as well as the parental CHO-K1 cells, expressed Le(x) on GLs. A Le(b)-binding H. pylori strain bound to the 1C5 and 2C2 cells. In summary, two glycosyltransferase transfected CHO-K1 cell clones differed regarding Lewis antigen expression on N- and O-linked glycans as well as on GLs. Both clones examined supported adhesion of a Le(b)-binding H. pylori strain and may thus be a useful in vitro model system for H. pylori colonization/infection studies.  相似文献   

5.
Breast-milk has a well-known anti-microbial effect, which is in part due to the many different carbohydrate structures expressed. This renders it a position as a potential therapeutic for treatment of infection by different pathogens, thus avoiding the drawbacks of many antibiotics. The plethora of carbohydrate epitopes in breast-milk is known to differ between species, with human milk expressing the most complex one. We have investigated the expression of protein-bound carbohydrate epitopes in milk from man, cow, goat, sheep, pig, horse, dromedary and rabbit. Proteins were separated by SDS-PAGE and the presence of carbohydrate epitopes on milk proteins were analysed by Western blotting using different lectins and carbohydrate-specific antibodies. We show that ABH, Lewis (Le)x, sialyl-Lex, Lea, sialyl-Lea and Leb carbohydrate epitopes are expressed mainly on man, pig and horse milk proteins. The blood group precursor structure H type 1 is expressed in all species investigated, while only pig, dromedary and rabbit milk proteins carry H type 2 epitopes. These epitopes are receptors for Helicobacter pylori (Leb and sialyl-Lex), enteropathogenic (H type 1, Lea and Lex) and enterotoxic Escherichia coli (heat-stable toxin; H type 1 and 2), and Campylobacter jejuni (H type 2). Thus, milk from these animals or their genetically modified descendants could have a therapeutic effect by inhibiting pathogen colonization and infection. Published in 2005.  相似文献   

6.
Recognition of defined carbohydrate structures by boar sperm was studied on the basis of oligosaccharide structures of porcine zona pellucida glycoproteins so far elucidated. Boar sperm abundantly adhered to fetuin-Sepharose beads, moderately to asialofetuin-Sepharose beads, but not at all to galactosidase (beta1-4-linkage-specific)-digested asialofetuin-Sepharose beads. The sperm also adhered to Le(x) oligosaccharide probe-coupled avidin-Sepharose beads. These adhesive activities were retained in the medium containing EDTA instead of calcium ion but abolished after induction of acrosome reaction by preincubation of sperm with calcium ionophore. Inhibition study of sperm adhesion to the beads by soluble ligands demonstrated that boar sperm express at least two kinds of carbohydrate recognition molecules, one recognizing both sialyl and nonsialyl N-acetyllactosamines but not the Le(x) structure and the other recognizing the Le(x) structure but not N-acetyllactosamines. Sperm binding to the zona pellucida on fixed porcine oocytes was inhibited by N-glycans of fetuin and their asialo form but not by the asialo, agalacto-N-glycans. Finally, dextran-based multivalent oligosaccharide polymers were prepared and their inhibitory activities in sperm-oocyte binding were examined. The result indicated that the polymer composed of fetuin N-glycans, its asialo-N-glycans, or lacto-N-fucopentaose III causes a remarkable inhibition at the oligosaccharide-based concentration of 50 microM. Thus, boar sperm are suggested to express multiple carbohydrate recognition molecules which may be involved in the sperm-egg interaction.  相似文献   

7.
Recently we identified sialyl 6-sulfo Le(x) as a major L-selectin ligand on high endothelial venules of human peripheral lymph nodes. In this study we investigated the ligand activity of sialyl 6-sulfo Le(x) to E- and P-selectins and compared it with the binding activity of conventional sialyl Le(x), by using cultured human lymphoid cells expressing both carbohydrate determinants. The results of the recombinant selectin binding studies and the nonstatic monolayer cell adhesion assays indicated that both sialyl 6-sulfo Le(x) and conventional sialyl Le(x) served as ligand for E- and P-selectins, while L-selectin was quite specific to sialyl 6-sulfo Le(x). Anti-PSGL-1 antibodies as well as O-sialoglycoprotein endopeptidase treatment almost completely abrogated the binding of P-selectin but barely affected the binding of E-selectin, indicating that these carbohydrate determinants carried by O-glycans of PSGL-1 selectively serves as a ligand for P-selectin, while the ligand for E-selectin is not restricted to PSGL-1 nor to O-sialoglycoprotein endopeptidase-sensitive glycans. The binding of L-selectin was markedly reduced by O-sialoglycoprotein endopeptidase treatment but only minimally affected by anti-PSGL-1 antibodies, indicating that O-glycans carrying sialyl 6-sulfo Le(x) were the major L-selectin ligands, while PSGL-1 was only a minor core protein for L-selectin in these cells. These results indicated that each member of the selectin family has a distinct ligand binding specificity.  相似文献   

8.
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.  相似文献   

9.
Past studies have shown that the cell surface lipopolysaccharides (LPSs) of the ubiquitous human gastric pathogen Helicobacter pylori (a type 1 carcinogen) isolated from people residing in Europe and North America express predominantly type 2 Lewis x (Le(x)) and Le(y) epitopes and, infrequently, type 1 Le(a), Le(b), and Le(d) antigens. This production of Lewis blood-group structures by H. pylori LPSs, similar to those found in the surfaces of human gastric cells, allows the bacterium to mimic its human niche. In this study, LPSs of H.pylori strains extracted from patients living in China, Japan, and Singapore were chemically and serologically analyzed. When compared with Western H.pylori LPSs, these Asian strains showed a stronger tendency to produce type 1 blood groups. Of particular interest, and novel observations in H.pylori, the O-chain regions of strains F-58C and R-58A carried type 1 Le(a) without the presence of type 2 Le(x), strains R-7A and H607 were shown to have the capability of producing the type 1 blood group A antigen, and strains CA2, H507, and H428 expressed simultaneously the difucosyl isomeric antigens, type 1 Le(b) and type 2 Le(y). The apparent proclivity for the production of type 1 histo-blood group antigens in Asian H.pylori LPSs, as compared with Western strains, may be an adaptive evolutionary effect in that differences in the gastric cell surfaces of the respective hosts might be significantly dissimilar to select for the formation of different LPS structures on the resident H.pylori strain.  相似文献   

10.
Altman E  Smirnova N  Li J  Aubry A  Logan SM 《Glycobiology》2003,13(11):777-783
The cell envelope of Helicobacter pylori contains a lipopolysaccharide (LPS) essential for the physical integrity and functioning of the bacterial cell membrane. The O-chain of this LPS frequently expresses type 2 Lewis x (Lex) and Lewis y (Ley) blood group antigens that mimic human gastric mucosal cell-surface glycoconjugates. This article describes the isolation and structural analysis of the LPS from a clinical isolate of H. pylori strain PJ2 that lacks Le antigens but is still capable of colonization. Subsequent composition, methylation, and CE-ESMS analyses of LPS revealed its core oligosaccharide structure to be consistent with the previously proposed structural model for H. pylori LPS. In addition, it carries an unusually long side branch alpha1,6-glucan and was devoid of Le O-chain polysaccharide. Its ability to colonize the mouse stomach was essentially identical to that of DD-heptoglycan- and Le antigen- producing H. pylori strains.  相似文献   

11.
The deleterious effects of Helicobacter pylori infection of the stomach are largely the result of a vigorous chronic inflammatory response, and include chronic gastritis, peptic ulceration and gastric cancer. We are exploring the possibility that carbohydrate components on H. pylori contribute to the persistent inflammation through interactions with leukocyte-endothelial adhesion molecules of the host. Lipopolysaccharides of most H. pylori strains contain sequences related to the Lewis (Le(x) or Le(a)) antigens. Carbohydrate sequences of this family encompass ligands for the leukocyte-endothelium adhesion molecules of the host, namely, the E- and P-selectins, which are expressed on inflamed endothelia, and L-selectin, which is constitutively expressed on leukocytes. Here we investigate H. pylori isolates from patients with chronic gastritis, duodenal ulcer and gastric cancer for their interactions with the selectins. Our results provide unequivocal evidence of interactions of isolates from each of the diagnostic groups with E- and L-selectins.  相似文献   

12.
Sialyl Le(x), NeuNAcalpha2 --> 3Galbeta1 --> 4(Fucalpha1 --> 3)GlcNAcbeta --> R, is known to be a ligand for E-selectin in various assays. The sulfated counterpart of sialyl Le(x), sulfo Le(x), (Sulfo --> 3) Galbeta1 --> 4 (Fucalpha1 --> 3) GlcNAcbeta --> R, was also shown to be a ligand for E-selectin in solid-phase assays employing immobilized oligosaccharides. In order to determine whether sulfo Le(x) structure on the cell surface also works as E-selectin or P-selectin ligand, a novel approach for in vitro transfer of oligosaccharides (S. Tsuboi, Y. Isogai, N. Hada, J. K. King, O. Hindsgaul, and M. Fukuda (1996) J. Biol. Chem. 271, 27213-27216) was utilized. A synthetic GDP-fucose harboring sialyl Le(x) or sulfo Le(x) oligosaccharide was enzymatically transferred to Chinese hamster ovary (CHO) cells with a milk fucosyltransferase. The resultant cells, CHO-sialyl Le(x) and CHO-sulfo Le(x) were tested for adhesion to E-selectin. IgG or P-selectin. IgG chimeric protein coated on plates. The results indicate that CHO-sialyl Le(x) adhered efficiently to E-selectin, while adhesion of CHO-sulfo Le(x) was very poor despite the fact that near equal number of the ligands had been attached to the cell surface. In contrast, CHO-sulfo Le(x) adhered efficiently to P-selectin, while CHO-sialyl Le(x) adhered modestly to P-selectin. These results demonstrate that sialyl Le(x) and sulfo Le(x) structures on the cell surface differ substantially in their ability to adhere to E- and P-selectin.  相似文献   

13.
Helicobacter pylori is an important gastroduodenal pathogen of humans whose survival in the gastric environment below pH 4 is dependent on bacterial production of urease, whereas above pH 4 urease-independent mechanisms are involved in survival, but that remain to be elucidated fully. Previous structural investigations on the lipopolysaccharides (LPSs) of H. pylori have shown that the majority of these surface glycolipids express partially fucosylated, glucosylated, or galactosylated N-acetyllactosamine (LacNAc) O-polysaccharide chains containing Lewis(x) (Le(x)) and/or Lewis(y) (Le(y)), although some strains also express type 1 determinants, Lewis(a), Lewis(b), and H-1 antigen. In this study, we investigated acid-induced changes in the structure and composition of LPS and cellular lipids of the genome-sequenced strain, H. pylori 26695. When grown in liquid medium at pH 7, the O-chain consisted of a type 2 LacNAc polysaccharide, which was glycosylated with alpha-1-fucose at O-3 of the majority of N-acetylglucosamine residues forming Le(x) units, including chain termination by a Le(x) unit. However, growth in liquid medium at pH 5 resulted in production of a more complex O-chain whose backbone of type 2 LacNAc units was partially glycosylated with alpha L-fucose, thus forming Le(x), whereas the majority of the nonfucosylated N-acetylglucosamine residues were substituted at O-6 by alpha-D-galactose residues, and the chain was terminated by a Le(y) unit. In contrast, detailed chemical analysis of the core and lipid A components of LPS and analysis of cellular lipids did not show significant differences between H. pylori 26695 grown at pH 5 and 7. Although putative molecular mechanisms affecting Le(x) and Le(y) expression have been investigated previously, this is the first report identifying an environmental trigger inducing phase variation of Le(x) and Le(y) in H. pylori that can aid adaptation of the bacterium to its ecological niche.  相似文献   

14.
Helicobacter pylori is a widespread Gram-negative bacterium responsible for the onset of various gastric pathologies and cancers in humans. A familiar trait of H. pylori is the production of cell-surface lipopolysaccharides (LPSs; O-chain --> core --> lipid A) with O-chain structures analogous to some mammalian histo-blood-group antigens, those being the Lewis determinants (Lea, Leb, Lex, sialyl Lex, Ley) and blood groups A and linear B. Some of these LPS antigens have been implicated as autoimmune, adhesion, and colonization components of H. pylori pathogenic mechanisms. This article describes the chemical structures of LPSs from H. pylori isolated from subjects with no overt signs of disease. Experimental data from chemical- and spectroscopic-based studies unanimously showed that these H. pylori manufactured extended heptoglycans composed of 2- and 3-linked D-glycero-alpha-D-manno-heptopyranose units and did not express any blood-group O-antigen chains. The fact that another H. pylori isolate with a similar LPS structure was shown to be capable of colonizing mice indicates that H. pylori histo-blood-group structures are not an absolute prerequisite for colonization in the murine model also. The absence of O-chains with histo-blood groups may cause H. pylori to become inept in exciting an immune response. Additionally, the presence of elongated heptoglycans may impede exposure of disease-causing outer-membrane antigens. These factors may render such H. pylori incapable of creating exogenous contacts essential for pathogenesis of severe gastroduodenal diseases and suggest that histo-blood groups in the LPS may indeed play a role in inducing a more severe H. pylori pathology.  相似文献   

15.
Individuals of the Le(b+)/secretor phenotype revealed a stronger natural immune response to Le(x) and Le(y) epitopes irrespective of Helicobacter pylori serologic status. In contrast, H. pylori-infected Le(b-) type individuals showed a significantly higher proportion of strong responders to Le(x) antigen compared with the H. pylori-uninfected subgroup. The data suggest that the immune response to Lewis type 2 determinants is related to both the H. pylori serologic status and the Le(a,b) phenotype of the host.  相似文献   

16.
Carbohydrate recognition by the human endothelial-leukocyte adhesion molecule, E-selectin, has been investigated by binding studies using 3H-labeled Chinese hamster ovary cells expressing different levels of the transfected full-length adhesion molecule and a series of structurally defined oligosaccharides linked to the lipid phosphatidylethanolamine dipalmitoate (neoglycolipids) and synthetic glycolipids chromatographed on silica gel plates or immobilized on plastic wells. Evidence is presented for density-dependent binding of the membrane-associated E-selectin not only to 3'-sialyl-lacto-N-fucopentaose II (3'-S-LNFP-II) and 3'-sialyl-lacto-N-fucopentaose III (3'-S-LNFP-III) which express the sialyl Le(a) and sialyl Le(x) antigens, respectively, but also to the nonsialylated analogue LNFP-II; there is a threshold density of E-selectin required for binding to these sialylated sequences, and binding to the nonsialylated analogue is a property only of cells with the highest density of E-selectin expression. The presence of fucose linked to subterminal rather than to an internal N-acetylglucosamine is shown to be a requirement for E-selectin binding, and although the presence of sialic acid 3-linked to the terminal galactose of the LNFP-II or LNFP-III sequences substantially enhances E-selectin binding, the presence of 6-linked sialic acid abolishes binding. E-selectin binding is unaffected in the presence of the blood group H fucose (alpha 1-2 linked to galactose to form the Le(b) antigen). However, the binding is abolished when in addition alpha 1-3-linked N-acetylgalactosamine to the galactose (blood group A antigen) is present. These results indicate that some E-selectin-mediated adhesive events may be influenced by blood group status.  相似文献   

17.
Selectin-mediated cell adhesion is an essential component of the inflammatory response. In an attempt to unambiguously identify molecular features of ligands that are necessary to support rolling adhesion on P-selectin, we have used a reconstituted ("cell-free") system in which ligand-coated beads are perfused over soluble P-selectin surfaces. We find that beads coated with the saccharides sialyl Lewis(x) (sLe(x)), sialyl Lewis(a) (sLe(a)), and sulfated Lewis(x) (HSO(3)Le(x) support rolling adhesion on P-selectin surfaces. Although it has been suggested that glycosylation and sulfation of P-selectin glycoprotein ligand-1 (PSGL-1) is required for high-affinity binding and rolling on P-selectin, our findings indicate that sulfation of N-terminal tyrosine residues is not required for binding or rolling. However, beads coated with a tyrosine-sulfated, sLe(x)-modified, PSGL-1-Fc chimera support slower rolling on P-selectin than beads coated with sLe(x) alone, suggesting that sulfation improves rolling adhesion by modulating binding to P-selectin. In addition, we find it is not necessary that P-selectin carbohydrate ligands be multivalent for robust rolling to occur. Our results demonstrate that beads coated with monovalent sLe(x), exhibiting a more sparse distribution of carbohydrate than a similar amount of the multivalent form, are sufficient to yield rolling adhesion. The relative abilities of various ligands to support rolling on P-selectin are quantitatively examined among themselves and in comparison to human neutrophils. Using stop-time distributions, rolling dynamics at video frame rate resolution, and the average and variance of the rolling velocity, we find that P-selectin ligands display the following quantitative trend, in order of decreasing ability to support rolling adhesion on P-selectin: PSGL-1-Fc > sLe(a) approximately sLe(x) > HSO(3)Le(x).  相似文献   

18.
This study was designed to determine whether magnesium ion in water would influence the colonization of Helicobacter pylori in 2-week-old miniature pigs. Groups A (2 pigs) and B (1 pig) were both fed a milk diet dissolved in drinking water, Group C (2 pigs) was fed a milk diet dissolved in deionized distilled water (DDW), and Group D (1 pig) was fed a milk diet dissolved in DDW supplemented with MgCl2. Groups B, C, and D were all challenged with H. pylori, and Group A was not. Necropsy was performed on the pigs on postinfection Day 5, and biopsy specimens were taken from 16 sites of the stomach. H. pylori were recovered from 11 of 16 sites in Group B, 1 of 32 sites in Group C, and 13 of 16 sites in Group D. On the other hand, the degree of lymphocyte infiltration increased in the order of Group A < Group B < Group C < Group D. These observations suggest that magnesium ion in drinking water is essential for the colonization of H. pylori in the pig stomach. Possible mechanisms for the lymphocyte infiltration are discussed.  相似文献   

19.
To assess the influence of monoclonal anti-Lewis b, anti-H type 1, and anti-sialyl Lewis x addition on interactions of sugar structures of MUC1 mucin with Helicobacter pylori. The investigations were carried out on gastric juices of 11 patients and 12 H. pylori strains. The levels of Lewis b and sialyl Lewis x antigens on MUC1 were assessed by sandwich ELISA tests. Anti-Lewis b, anti-H type 1 or anti-sialyl Lewis x monoclonal antibodies were added to MUC1 to determine whether the adhesion activities of H. pylori isolates to examined mucin would be affected. Binding of bacteria to MUC1 was assessed by ELISA test. Clear inhibitory effect of examined antibodies was revealed in 6 of 12 examined H. pylori isolates independently on babA2 status. In the rest of strains this effect was negligible. We confirmed participation of Lewis b, H type 1 and also sialyl Lewis x of MUC1 mucin in interactions with H. pylori independently on babA genopositivity. Not full inhibition and a lack of this effect in some strains suggest an existence of other mechanisms of H. pylori adherence to mucin.  相似文献   

20.
Wu AM  Wu JH  Singh T  Liu JH  Tsai MS  Gilboa-Garber N 《Biochimie》2006,88(10):1479-1492
Pseudomonas aeruginosa Fuc > Man specific lectin, PA-IIL, is an important microbial agglutinin that might be involved in P. aeruginosa infections in humans. In order to delineate the structures of these lectin receptors, its detailed carbohydrate recognition profile was studied both by microtiter plate biotin/avidin-mediated enzyme-lectin-glycan binding assay (ELLSA) and by inhibition of the lectin-glycan interaction. Among 40 glycans tested for binding, PA-IIL reacted well with all human blood group ABH and Le(a)/Le(b) active glycoproteins (gps), but weakly or not at all with their precursor gps and N-linked gps. Among the sugar ligands tested by the inhibition assay, the Le(a) pentasaccharide lacto-N-fucopentaose II (LNFP II, Galbeta1-3[Fucalpha1-4]GlcNAcbeta1-3Galbeta1-4Glc) was the most potent one, being 10 and 38 times more active than the Le(x) pentasaccharide (LNFP III, Galbeta1-4 [Fucalpha1-3]GlcNAcbeta1-3Galbeta1-4Glc) and sialyl Le(x) (Neu5Acalpha2-3Galbeta1-4[Fucalpha1-3] GlcNAc), respectively. It was 120 times more active than Man, while Gal and GalNAc were inactive. The decreasing order of PA-IIL affinity for the oligosaccharides tested was: Le(a) pentaose > or = sialyl Le(a) tetraose > methyl alphaFuc > Fuc and Fucalpha1-2Gal (H disaccharide)>2'-fucosyllactose (H trisaccharide), Le(x) pentaose, Le(b) hexaose (LNDFH I) and gluco-analogue of Le(y) tetraose (LDFT)>H type I determinant (LNFP I)>Le(x) trisaccharide (Galbeta1-4[Fucalpha1-3]GlcNAc) > sialyl Le(x) trisaccharide > Man > Gal, GalNAc, and Glc (inactive). The results presented here, in accordance with the crystal 3D structural data, imply that the combining site of PA-IIL is a small cavity-type best fitting Fucalpha1- with a specific shallow groove subsite for the remainder part of the Le(a) saccharides, and that polyvalent glycotopes enhance the reactivity. The Fuc > Man Ralstonia solanacearum lectin RSL, which resembles PA-IIL in sugar specificity, differs from it in it's better fit to the B and A followed by H oligosaccharides vs. Fuc, whereas, the second R. solanacearum lectin RS-IIL (the structural homologue of PA-IIL) binds Man > Fuc. These results provide a valuable information on PA-IIL interactions with mammalian glycoforms and the possible spectrum of attachment sites for the homing of this aggressive bacterium onto the target molecules. Such information might be useful for the antiadhesive therapy of P. aeruginosa infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号