首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stalk protein L12 is the only multiple component in 50S ribosomal subunit. In Escherichia coli, two L12 dimers bind to the C-terminal domain of L10 to form a pentameric complex, L10[(L12)(2)](2), while the recent X-ray crystallographic study and tandem MS analyses revealed the presence of a heptameric complex, L10[(L12)(2)](3), in some thermophilic bacteria. We here characterized the complex of Thermus thermophilus (Tt-) L10 and Tt-L12 stalk proteins by biochemical approaches using C-terminally truncated variants of Tt-L10. The C-terminal 44-residues removal (Delta44) resulted in complete loss of interactions with Tt-L12. Quantitative analysis of Tt-L12 assembled onto E. coli 50S core particles, together with Tt-L10 variants, indicated that the wild-type, Delta13 and Delta23 variants bound three, two and one Tt-L12 dimers, respectively. The hybrid ribosomes that contained the T. thermophilus proteins were highly accessible to E. coli elongation factors. The progressive removal of Tt-L12 dimers caused a stepwise reduction of ribosomal activities, which suggested that each individual stalk dimer contributed to ribosomal function. Interestingly, the hybrid ribosomes showed higher EF-G-dependent GTPase activity than E. coli ribosomes, even when two or one Tt-L12 dimer. This result seems to be due to a structural characteristic of Tt-L12 dimer.  相似文献   

2.
BACKGROUND: In recent years, the three-dimensional structure of the ribosome has been visualised in different functional states by single-particle cryo-electron microscopy (cryo-EM) at 13-25 A resolution. Even more recently, X-ray crystallography has achieved resolution levels better than 10 A for the ribosomal structures of thermophilic and halophilic organisms. We present here the 7.5 A solution structure of the 50S large subunit of the Escherichia coli ribosome, as determined by cryo-EM and angular reconstitution. RESULTS: The reconstruction reveals a host of new details including the long alpha helix connecting the N- and C-terminal domains of the L9 protein, which is found wrapped like a collar around the base of the L1 stalk. A second L7/L12 dimer is now visible below the classical L7/L12 'stalk', thus revealing the position of the entire L8 complex. Extensive conformational changes occur in the 50S subunit upon 30S binding; for example, the L9 protein moves by some 50 A. Various rRNA stem-loops are found to be involved in subunit binding: helix h38, located in the A-site finger; h69, on the rim of the peptidyl transferase centre cleft; and h34, in the principal interface protrusion. CONCLUSIONS: Single-particle cryo-EM is rapidly evolving towards the resolution levels required for the direct atomic interpretation of the structure of the ribosome. Structural details such as the minor and major grooves in rRNA double helices and alpha helices of the ribosomal proteins can already be visualised directly in cryo-EM reconstructions of ribosomes frozen in different functional states.  相似文献   

3.
1. Polyclonal antibodies (pAb 1-73 and pAb 26-120) have been raised against both an N-terminal fragment of Escherichia coli ribosomal protein L7/L12 (amino acids 1-73), and a fragment lacking part of the N-terminal domain (amino acids 26-120). 2. Only pAb 26-120 inhibited release-factor-dependent in vitro termination functions on the ribosome. This antibody binds over the length of the stalk of the large subunit of the ribosome as determined by immune electron microscopy, thereby not distinguishing between the C-terminal domains of the two L7/L12 dimers, those in the stalk or those in the body of the subunit. 3. A monoclonal antibody against an epitope of the C-terminal two thirds of the protein (mAb 74-120), which binds both to the distal tip of the stalk as well as to a region at its base, reflecting the positions of the two dimers is strongly inhibitory of release factor function. 4. A monoclonal antibody against an epitope of the N-terminal fragment of L7/L12 (mAb 1-73), previously shown to remove the dimer of L7/L12 in the 50S subunit stalk but still bind to the body of the particle, partially inhibited release-factor-mediated events. 5. The mAb 74-120 inhibited in vitro termination with a similar profile when the stalk dimer of L7/L12 was removed with mAb 1-73, indicating that the body L7/L12 dimer, and in particular its C-terminal domains, are important for release factor/ribosome interaction. 6. The two release factors have subtle differences in their binding domains with respect to L7/L12.  相似文献   

4.
5.
The ribosomal stalk complex binds and recruits translation factors to the ribosome during protein biosynthesis. In Escherichia coli the stalk is composed of protein L10 and four copies of L7/L12. Despite the crucial role of the stalk, mechanistic details of L7/L12 subunit exchange are not established. By incubating isotopically labeled intact ribosomes with their unlabeled counterparts we monitored the exchange of the labile stalk proteins by recording mass spectra as a function of time. On the basis of kinetic analysis, we proposed a mechanism whereby exchange proceeds via L7/L12 monomers and dimers. We also compared exchange of L7/L12 from free ribosomes with exchange from ribosomes in complex with elongation factor G (EF-G), trapped in the posttranslocational state by fusidic acid. Results showed that binding of EF-G reduces the L7/L12 exchange reaction of monomers by ~27% and of dimers by ~47% compared with exchange from free ribosomes. This is consistent with a model in which binding of EF-G does not modify interactions between the L7/L12 monomers but rather one of the four monomers, and as a result one of the two dimers, become anchored to the ribosome-EF-G complex preventing their free exchange. Overall therefore our results not only provide mechanistic insight into the exchange of L7/L12 monomers and dimers and the effects of EF-G binding but also have implications for modulating stability in response to environmental and functional stimuli within the cell.  相似文献   

6.
During protein biosynthesis, ribosomes are believed to go through a cycle of conformational transitions. We have identified some of the most variable regions of the E. coli 70S ribosome and its subunits, by means of cryo-electron microscopy and three-dimensional (3D) reconstruction. Conformational changes in the smaller 30S subunit are mainly associated with the functionally important domains of the subunit, such as the neck and the platform, as seen by comparison of heat-activated, non-activated and 50S-bound states. In the larger 50S subunit the most variable regions are the L7/L12 stalk, central protuberance and the L1-protein, as observed in various tRNA-70S ribosome complexes. Difference maps calculated between 3D maps of ribosomes help pinpoint the location of ribosomal regions that are most strongly affected by conformational transitions. These results throw direct light on the dynamic behavior of the ribosome and help in understanding the role of these flexible domains in the translation process.  相似文献   

7.
Moens PD  Wahl MC  Jameson DM 《Biochemistry》2005,44(9):3298-3305
The "stalk" of the prokaryotic 50S ribosomal subunit is comprised of four copies of the protein L7/L12. In Escherichia coli, L7/L12 is a dimeric protein at micromolar concentrations, which is able to undergo rapid subunit exchange. A recent structural study indicated a tetrameric arrangement of the L12 proteins isolated from Thermotoga maritima, in which the proteins engaged in two different dimerization modes. In one mode, the two monomers of L12 form a tight symmetric and parallel dimer held together by a four-helix bundle, which encompasses the hinge region between the N- and C-terminal domains. In the other mode, the two monomers bind through their N-terminal region in an antiparallel configuration, in which one monomer comprises an alpha-helical hinge and the other monomer adopts an elongated shape with an unfolded hinge region. Presently, it is unclear which dimer contact prevails in solution and on the ribosome. Using cysteine mutants of T. maritima labeled with fluorescent probes, we investigated the mode of interactions between L12 subunits. Data from Forster resonance energy transfer experiments support a dimerization of L12 in solution, in which two monomers bind through their N-terminal region in an antiparallel configuration. We also demonstrate that the rate of subunit exchange in T. maritima L12 is significantly slower at 25 degrees C than that in the E. coli system. The exchange rate increases with increasing temperature and approaches the one observed for the E. coli system at 50 degrees C. Possible factors responsible for this difference are discussed.  相似文献   

8.
We cloned the genes encoding the ribosomal proteins Ph (Pyrococcus horikoshii)-P0, Ph-L12 and Ph-L11, which constitute the GTPase-associated centre of the archaebacterium Pyrococcus horikoshii. These proteins are homologues of the eukaryotic P0, P1/P2 and eL12 proteins, and correspond to Escherichia coli L10, L7/L12 and L11 proteins respectively. The proteins and the truncation mutants of Ph-P0 were overexpressed in E. coli cells and used for in vitro assembly on to the conserved domain around position 1070 of 23S rRNA (E. coli numbering). Ph-L12 tightly associated as a homodimer and bound to the C-terminal half of Ph-P0. The Ph-P0.Ph-L12 complex and Ph-L11 bound to the 1070 rRNA fragments from the three biological kingdoms in the same manner as the equivalent proteins of eukaryotic and eubacterial ribosomes. The Ph-P0.Ph-L12 complex and Ph-L11 could replace L10.L7/L12 and L11 respectively, on the E. coli 50S subunit in vitro. The resultant hybrid ribosome was accessible for eukaryotic, as well as archaebacterial elongation factors, but not for prokaryotic elongation factors. The GTPase and polyphenylalanine-synthetic activity that is dependent on eukaryotic elongation factors was comparable with that of the hybrid ribosomes carrying the eukaryotic ribosomal proteins. The results suggest that the archaebacterial proteins, including the Ph-L12 homodimer, are functionally accessible to eukaryotic translation factors.  相似文献   

9.
During translation, the ribosome and several of its constituent proteins undergo structural transitions between different functional states. Protein L12, present in four copies in prokaryotic ribosomes, forms a flexible "stalk" with key functions in factor-dependent GTP hydrolysis during translocation. Here we have used heteronuclear NMR spectroscopy to characterize L12 conformation and dynamics in solution and on the ribosome. Isolated L12 forms a symmetric dimer mediated by the N-terminal domains (NTDs), to which each C-terminal domain (CTD) is connected via an unstructured hinge segment. The overall structure can be described as three ellipsoids joined by flexible linkers. No persistent contacts are seen between the two CTDs, or between the NTD and CTD in the L12 dimer in solution. In the (1)H-(15)N HSQC spectrum of the Escherichia coli 70S ribosome, a single set of cross-peaks are observed for residues 40-120 of L12, the intensities of which correspond to only two of four protein copies. The structure of the CTDs observed on the ribosome is indistinguishable from that of isolated L12. These results indicate that two CTDs with identical average structures are mobile and extend away from the ribosome, while the other two copies most likely interact tightly with the ribosome even in the absence of translational factors.  相似文献   

10.
11.
Oligonucleotide-directed mutagenesis was used to produce a serine 89 to cysteine 89 substitution in the C-terminal globular domain of Escherichia coli ribosomal protein L7/L12. Cys-89 represented the only cysteine residue in the protein. L7/L12Cys89 was overproduced in E. coli and purified. An allele replacement strain was also constructed. Growth of this strain was indistinguishable from that of wild type. Ribosomes from the allele replacement strain were used to determine the location of the C-terminal domains of L7/L12 by disulfide cross-linking. A new homobifunctional cysteine-specific cross-linking reagent, 1,4-di[3'-(2'-pyridyldithio)-propionamido]butane, and diagonal gel electrophoresis were used to identify ribosomal proteins cross-linked to L7/L12Cys89. A cross-link between L7/L12 and the single cysteine in L10 was found, in addition to L7/L12 dimers. The L7/L12Cys89-L10 cross-link locates the C-terminal domain of at least one L7/L12 dimer on the body of the large subunit and supports our previous model (Olson, H. M., Sommer, A., Tewari, D. S., Traut, R. R., and Glitz, D. G. (1986) J. Biol. Chem. 261, 6924-6932) that depicts one of the two dimers of L7/L12 on the surface of the body of the 50 S subunit in a bent conformation with the C-terminal domain in close proximity to the N-terminal domain at the base of the stalk.  相似文献   

12.
Initiation factors, elongation factors, and release factors all interact with the L7/L12 stalk of the large ribosomal subunit during their respective GTP-dependent cycles on the ribosome. Electron density corresponding to the stalk is not present in previous crystal structures of either 50 S subunits or 70 S ribosomes. We have now discovered conditions that result in a more ordered factor-binding center in the Haloarcula marismortui (H.ma) large ribosomal subunit crystals and consequently allows the visualization of the full-length L11, the N-terminal domain (NTD) of L10 and helices 43 and 44 of 23 S rRNA. The resulting model is currently the most complete reported structure of a L7/L12 stalk in the context of a ribosome. This region contains a series of intermolecular interfaces that are smaller than those typically seen in other ribonucleoprotein interactions within the 50 S subunit. Comparisons of the L11 NTD position between the current structure, which is has an NTD splayed out with respect to previous structures, and other structures of ribosomes in different functional states demonstrates a dynamic range of L11 NTD movements. We propose that the L11 NTD moves through three different relative positions during the translational cycle: apo-ribosome, factor-bound pre-GTP hydrolysis and post-GTP hydrolysis. These positions outline a pathway for L11 NTD movements that are dependent on the specific nucleotide state of the bound ligand. These three states are represented by the orientations of the L11 NTD relative to the ribosome and suggest that L11 may play a more specialized role in the factor binding cycle than previously appreciated.  相似文献   

13.
RNA-protein contacts in pretranslocated and posttranslocated states of E. coli ribosomes have been determined by means of UV-induced cross-linking. In the two functional states as well as in free 70C ribosome, the same proteins are involved in RNA-protein intersubunit contacts, located in the region of L1 protuberance (left side of 70S ribosome). The transition from pre- to posttranslocated state is accompanied by disappearance of RNA-protein contacts in the region of L7/L12 stalk. This favours the locking-unlocking model of the translating ribosome.  相似文献   

14.
Monoclonal antibodies against Escherichia coli ribosomal proteins L9 and L10 were obtained and their specificity confirmed by Western blot analysis of total ribosomal protein. This was particularly important for the L9 antibody, since the immunizing antigen mixture contained predominantly L11. Each antibody recognized both 70 S ribosomes and 50 S subunits. Affinity-purified antibodies were tested for their effect on in vitro assays of ribosome function. Anti-L10 and anti-L9 inhibited poly(U)-directed polyphenylalanine synthesis almost completely. The antibodies had no effect on subunit association or dissociation and neither antibody inhibited peptidyltransferase activity. Both antibodies inhibited the binding of the ternary complex that consisted of aminoacyl-tRNA, guanylyl beta, gamma-methylenediphosphonate, and elongation factor Tu, and the binding of elongation factor G to the ribosome. The intact antibodies were more potent inhibitors than the Fab fragments. In contrast to the previously established location of L10 at the base of the L7/L12 stalk near the factor-binding site, the site of anti-L9 binding to 50 S subunits was shown by immune electron microscopy to be on the L1 lateral protuberance opposite the L7/L12 stalk as viewed in the quasisymmetric projection. The inhibition of factor binding by both antibodies, although consistent with established properties of L10 in the ribosome, suggests a long range effect on subunit structure that is triggered by the binding of anti-L9.  相似文献   

15.
Griaznova O  Traut RR 《Biochemistry》2000,39(14):4075-4081
Escherichia coli ribosomal protein L10 binds the two L7/L12 dimers and thereby anchors them to the large ribosomal subunit. C-Terminal deletion variants (Delta10, Delta20, and Delta33 amino acids) of ribosomal protein L10 were constructed in order to define the binding sites for the two L7/L12 dimers and then to make and test ribosomal particles that contain only one of the two dimers. None of the deletions interfered with binding of L10 variants to ribosomal core particles. Deletion of 20 or 33 amino acids led to the inability of the proteins to bind both dimers of protein L7/L12. The L10 variant with deletion of 10 amino acids bound one L7/L12 dimer in solution and when reconstituted into ribosomes promoted the binding of only one L7/L12 dimer to the ribosome. The ribosomes that contained a single L7/L12 dimer were homogeneous by gel electrophoresis where they had a mobility between wild-type 50S subunits and cores completely lacking L7/L12. The single-dimer ribosomal particles supported elongation factor G dependent GTP hydrolysis and protein synthesis in vitro with the same activity as that of two-dimer particles. The results suggest that amino acids 145-154 in protein L10 determine the binding site ("internal-site") for one L7/L12 dimer (the one reported here), and residues 155-164 ("C-terminal-site") are involved in the interaction with the second L7/L12 dimer. Homogeneous ribosomal particles containing a single L7/L12 dimer in each of the distinct sites present an ideal system for studying the location, conformation, dynamics, and function of each of the dimers individually.  相似文献   

16.
Ribosomal L10-L7/L12 protein complex and L11 bind to a highly conserved RNA region around position 1070 in domain II of 23 S rRNA and constitute a part of the GTPase-associated center in Escherichia coli ribosomes. We replaced these ribosomal proteins in vitro with the rat counterparts P0-P1/P2 complex and RL12, and tested them for ribosomal activities. The core 50 S subunit lacking the proteins on the 1070 RNA domain was prepared under gentle conditions from a mutant deficient in ribosomal protein L11. The rat proteins bound to the core 50 S subunit through their interactions with the 1070 RNA domain. The resultant hybrid ribosome was insensitive to thiostrepton and showed poly(U)-programmed polyphenylalanine synthesis dependent on the actions of both eukaryotic elongation factors 1alpha (eEF-1alpha) and 2 (eEF-2) but not of the prokaryotic equivalent factors EF-Tu and EF-G. The results from replacement of either the L10-L7/L12 complex or L11 with rat protein showed that the P0-P1/P2 complex, and not RL12, was responsible for the specificity of the eukaryotic ribosomes to eukaryotic elongation factors and for the accompanying GTPase activity. The presence of either E. coli L11 or rat RL12 considerably stimulated the polyphenylalanine synthesis by the hybrid ribosome, suggesting that L11/RL12 proteins play an important role in post-GTPase events of translation elongation.  相似文献   

17.
Mobile domains in ribosomes revealed by proton nuclear magnetic resonance   总被引:4,自引:0,他引:4  
Ribosomes and subunits from eukaryotic and prokaryotic sources were studied by high-resolution proton magnetic-resonance spectroscopy. If all ribosomal components are firmly bound within the particle, then only broad spectra would be expected. However, relatively sharp resonances were found both in ribosomal subunits and in 70 or 80 S ribosomes. The regions of these mobile protein domains have been partially assigned in Escherichia coli ribosomes. Large and small ribosomal subunits were treated to remove selectively proteins L7/12 and S1, respectively. Sharp proton magnetic resonance spectra were not observed for the stripped large subunit showing that proteins L7/12 comprise the flexible protein region and that there is little other flexibility in the stripped subunit. Complete removal of S1 from the small subunit greatly reduced but did not abolish the sharp protein resonance peaks, indicating that protein S1 contains a substantial flexible component but that other flexible components remain in the stripped small subunit. Evidence for generality of these features of ribosome organization is provided by similar studies on ribosomes from eukaryotic sources.  相似文献   

18.
The ribosomal stalk protein L12 is essential for events dependent on the GTP-binding translation factors. It has been recently shown that ribosomes from Thermus thermophilus contain a heptameric complex L10.(L12)2.(L12)2.(L12)2, rather than the conventional pentameric complex L10.(L12)2.(L12)2. Here we describe the reconstitution of the heptameric complex from purified L10 and L12 and the characterization of its role in elongation factor G-dependent GTPase activity using a hybrid system with Escherichia coli ribosomes. The T. thermophilus heptameric complex resulted in a 2.5-fold higher activity than the E. coli pentameric complex. The structural element of the T. thermophilus complex responsible for the higher activity was investigated using a chimeric L10 protein (Ec-Tt-L10), in which the C-terminal L12-binding site in E. coli L10 was replaced with the same region from T. thermophilus, and two chimeric L12 proteins: Ec-Tt-L12, in which the E. coli N-terminal domain was fused with the T. thermophilus C-terminal domain, and Tt.Ec-L12, in which the T. thermophilus N-terminal domain was fused with the E. coli C-terminal domain. High GTPase turnover was observed with the pentameric chimeric complex formed from E. coli L10 and Ec-Tt-L12 but not with the heptameric complex formed from Ec-Tt-L10 and Tt.Ec-L12. This suggested that the C-terminal region of T. thermophilus L12, rather than the heptameric nature of the complex, was responsible for the high GTPase turnover. Further analyses with other chimeric L12 proteins identified helix alpha6 as the region most likely to contain the responsible element.  相似文献   

19.
Ribosomal stalk is involved in the formation of the so-called “GTPase-associated site” and plays a key role in the interaction of ribosome with translation factors and in the control of translation accuracy. The stalk is formed by two or three copies of the L7/L12 dimer bound to the C-terminal tail of protein L10. The N-terminal domain of L10 binds to a segment of domain II of 23S rRNA near the binding site for ribosomal protein L11. The structure of bacterial L10 in complex with three L7/L12 N-terminal dimers has been determined in the isolated state, and the structure of the first third of archaeal L10 bound to domain II of 23S rRNA has been solved within the Haloarcula marismortui 50S ribosomal subunit. A close structural similarity between the RNA-binding domain of archaeal L10 and the RNA-binding domain of bacterial L10 has been demonstrated. In this work, a long RNA-binding N-terminal fragment of L10 from Methanococcus jannaschii has been isolated and crystallized. The crystal structure of this fragment (which encompasses two-thirds of the protein) has been solved at 1.6 Å resolution. The model presented shows the structure of the RNA-binding domain and the structure of the adjacent domain that exist in archaeal L10 and eukaryotic P0 proteins only. Furthermore, our model incorporated into the structure of the H. marismortui 50S ribosomal subunit allows clarification of the structure of the archaeal ribosomal stalk base.  相似文献   

20.
Bacterial ribosomal L7/L12 stalk is formed by L10, L11, and multiple copies of L7/L12, which plays an essential role in recruiting initiation and elongation factors during translation. The homologs of these proteins, MRPL10, MRPL11, and MRPL12, are present in human mitochondrial ribosomes. To evaluate the role of MRPL10, MRPL11, and MRPL12 in translation, we over-expressed and purified components of the human mitochondrial L7/L12 stalk proteins in Escherichia coli. Here, we designed a construct to co-express MRPL10 and MRPL12 using a duet expression system to form a functional MRPL10-MRPL12 complex. The goal is to demonstrate the homology between the mitochondrial and bacterial L7/L12 stalk proteins and to reconstitute a hybrid ribosome to be used in structural and functional studies of the mitochondrial stalk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号