首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N Moran  E Bock 《FEBS letters》1988,242(1):121-124
A solid-phase assay has been developed for the investigation of the kinetics of neural cell adhesion molecule (NCAM) binding. Using this assay we can show that NCAM binds to itself in a time-dependent and saturable manner. Binding constants (KB values) of 6.9 x 10(-8) M and 1.23 x 10(-6) M, respectively, were obtained for adult and newborn rat NCAM homophilic binding. Binding is specifically inhibited by Fab' fragments of polyclonal anti-NCAM antibodies but is unaffected by heparin or chondroitin sulphate. This indicates that the NCAM homophilic binding site is separate from and independent of the heparin-binding site and that a developmental modification, probably polysialation, gives rise to marked differences in the adhesive properties of NCAM.  相似文献   

2.
Most plasma membrane proteins are capable of sensing multiple cell-cell and cell-ligand interactions, but the extent to which this functional versatility is founded on their modular design is less clear. We have identified the third immunoglobulin domain of the Neural Cell Adhesion Molecule (NCAM) as the necessary and sufficient determinant for its interaction with Glial Cell Line-derived Neurotrophic Factor (GDNF). Four charged contacts were identified by molecular modeling as the main contributors to binding energy. Their mutation abolished GDNF binding to NCAM but left intact the ability of NCAM to mediate cell adhesion, indicating that the two functions are genetically separable. The GDNF-NCAM interface allows complex formation with the GDNF family receptor alpha1, shedding light on the molecular architecture of a multicomponent GDNF receptor.  相似文献   

3.
Expression of the neural cell adhesion molecule NCAM in endocrine cells   总被引:7,自引:0,他引:7  
We examined the expression of the neural cell adhesion molecule NCAM in a number of endocrine tissues of adult rat and in an endocrine tumor cell line. NCAM was found by immunoelectron microscopy to be present on the surface of all endocrine cells in the three lobes of the hypophysis, although staining was relatively less intense in the intermediate lobe, and in pancreatic islets. Pituicytes, hypophyseal glial cells, were also labeled for NCAM. A rat insulinoma cell line (RIN A2) also expressed NCAM as judged by immunocytochemistry. Analysis of NCAM antigenic determinants (Mr 180, 140, and 120 KD) revealed large variations in the relative proportions of NCAM polypeptides present in the different tissues. Although all tissues and cell lines expressed NCAM-140, NCAM-180 was not detected in the adenohypophysis, pancreas, or adrenal medulla, and NCAM-120 was found in none of the endocrine tissues or cell lines except at low levels in the neurohypophysis. The tumor cell line expressed significant levels of NCAM-180, which was most abundant in the neurohypophysis. These results show that NCAM expression appears to be a general property of endocrine cells, although the antigenic composition differs markedly from that in brain tissue. These data are discussed with regard to the embryological origins of the different endocrine tissues, and possible functional implications are suggested.  相似文献   

4.
NCAM plays a key role in neural development and plasticity-mediating cell adhesion and differentiation mainly through homophilic binding. Until recently, attempts to modulate neuronal differentiation and plasticity through NCAM have been impeded by the absence of small synthetic agonists mimicking homophilic interactions of NCAM. We show here that a peptide, P2, corresponding to a 12-amino acid sequence localized in the FG loop of the second Ig module of NCAM, binds to the first Ig module, which is the natural binding partner of the second Ig module, with an apparent K(d) of 4.7 +/- 0.9 x 10(-6) m. P2 inhibits cell aggregation and induces neurite outgrowth from hippocampal neurons, maximal neuritogenic effect being obtained at a concentration of 0.8 microm. The neuritogenic effect was inhibited by preincubation of P2 with the recombinant NCAM-IgI. Both the length of P2 and the basic amino acid residues at the N and C termini are important for its neuritogenic activity. Treatment of hippocampal cultures with P2 results in induction of phosphorylation of the mitogen-activated protein kinases ERK1 and ERK2. Thus, P2 is a potent mimetic of NCAM, and therefore, an attractive compound for the development of drugs for the treatment of neurodegenerative diseases.  相似文献   

5.
R K Kamboj  J Gariepy  C H Siu 《Cell》1989,59(4):615-625
During development of Dictyostelium discoideum, a surface glycoprotein of Mr 80,000 (gp80) is known to mediate EDTA-resistant cell-cell adhesion via homophilic interaction. Antibodies directed against a 13 amino acid sequence (13-mer) near the NH2 terminus of the protein were found to inhibit cell reassociation. This 13-mer also inhibited gp80-cell interaction and gp80-gp80 interaction. The cell binding site was mapped to the octapeptide sequence YKLNVNDS by using shorter peptide sequences to inhibit gp80 interaction. High salt concentrations inhibited homophilic interactions of both the 13-mer and gp80, suggesting that ionic interactions are involved in the forward binding reaction. Since disruption of homophilic interactions between the bound molecules required the presence of Triton X-100, hydrophobic interactions may occur after the initial ionic binding.  相似文献   

6.
Neural cell adhesion molecule (NCAM) is a cell surface adhesion glycoprotein that plays an important role in the development and stability of nervous tissue. The homophilic binding mechanism of NCAM is still a subject of debate on account of findings that appear to support different mechanisms. This paper describes single molecule force measurements with both full-length NCAM and NCAM mutants that lack different immunoglobulin (Ig) domains. By systematically applying an external, time-dependent force to the bond, we obtained parameters that describe the energy landscape of NCAM-NCAM bonds. Histograms of the rupture forces between the full-length NCAM extracellular domains revealed two binding events, one rupturing at higher forces than the other. These bond rupture data show that the two bonds have the same dissociation rates. Despite the energetic and kinetic similarities, the bond strengths differ significantly, and are mechanically distinct. Measurements with NCAM domain deletion mutants mapped the weaker bond to the Ig1-2 segment, and the stronger bond to the Ig3 domain. Finally, the quantitative agreement between the fragment adhesion and the strengths of both NCAM bonds shows that the domain deletions considered in this study do not alter the intrinsic strengths of either of the two bonds.  相似文献   

7.
Transmembrane forms of neural cell adhesion molecule (NCAM140, NCAM180(1)) are key regulators of neuronal development. The extracellular domain of NCAM can occur as a soluble protein in normal brain, and its levels are elevated in neuropsychiatric disorders, such as schizophrenia; however the mechanism of ectodomain release is obscure. Ectodomain shedding of NCAM140, releasing a fragment of 115 kD, was found to be induced in NCAM-transfected L-fibroblasts by the tyrosine phosphatase inhibitor pervanadate, but not phorbol esters. Pervanadate-induced shedding was mediated by a disintegrin metalloprotease (ADAM), regulated by ERK1/2 MAP kinase. In primary cortical neurons, NCAM was shed at high levels, and the metalloprotease inhibitor GM6001 significantly increased NCAM-dependent neurite branching and outgrowth. Moreover, NCAM-dependent neurite outgrowth and branching were inhibited in neurons isolated from a transgenic mouse model of NCAM shedding. These results suggest that regulated metalloprotease-induced ectodomain shedding of NCAM down-regulates neurite branching and neurite outgrowth. Thus, increased levels of soluble NCAM in schizophrenic brain have the potential to impair neuronal connectivity.  相似文献   

8.
Mutations in the gene for neural cell adhesion molecule L1 (L1CAM) result in a debilitating X-linked congenital disorder of brain development. At the neuronal cell surface L1 may interact with a variety of different molecules including itself and two other CAMs of the immunoglobulin superfamily, axonin-1 and F11. However, whether all of these interactions are relevant to normal or abnormal development has not been determined. Over one-third of patient mutations are single amino acid changes distributed across 10 extracellular L1 domains. We have studied the effects of 12 missense mutations on binding to L1, axonin-1 and F11 and shown for the first time that whereas many mutations affect all three interactions, others affect homophilic or heterophilic binding alone. Patient pathology is therefore due to different types of L1 malfunction. The nature and functional consequence of mutation is also reflected in the severity of the resultant phenotype with structural mutations likely to affect more than one binding activity and result in early mortality. Moreover, the data indicate that several extracellular domains of L1 are required for homophilic and heterophilic interactions.  相似文献   

9.
Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos   总被引:13,自引:0,他引:13  
Using a classical neural induction protocol (H. Spemann and H. Mangold (1924). Roux' Arch. Entwicklungsmech. Org. 123, 389-517), it has been demonstrated that the sustained presence of NCAM in Xenopus embryos, as detected by immunohistochemistry, was confined to the experimentally induced nervous system and the primary host nervous system. Furthermore, in vitro NCAM expression by dorsal blastopore lip and animal pole tissue was detected only when the two tissues were cultured in contact. These and other results show that readily detected and sustained levels of NCAM expression in Xenopus can be used as a marker for neural tissue and an early positive indicator that neural induction has occurred. They suggest that the observed levels of NCAM are a consequence of and not a prerequisite for induction. Using NCAM expression in vitro to determine the minimum time necessary for this induction to occur in vivo, it was found that NCAM was first detected in cultured animal pole that had been removed at stage 10.75 or later. Thus, an inductive step necessary and sufficient for stimulation of NCAM expression in animal pole tissues had not occurred or was reversible prior to the first 2 to 2.5 hr of gastrulation.  相似文献   

10.
We have analyzed the expression of the intracellular marker protein neuron specific enolase (NSE), synaptophysin (SYN) and of the cell surface marker NCAM (neural cell adhesion molecule) in both normal hypophysis and in pituitary adenomas in order to explore their potential use as diagnostic tools. All adenomas (4 prolactinomas, 3 growth hormone (GH) producing adenomas and 4 inactive adenomas) showed SYN and NSE immunoreactivity on tissue sections and this was confirmed by immunoblots. NCAM 140 (an isoform of NCAM with molecular mass 140 kDa) was detected by immunoblotting in normal human adenohypophysis, in all GH adenomas, and in three out of four inactive adenomas, but not in prolactinomas. Using highly sensitive techniques, NCAM immunoreactivity was observed by electron microscopy in all adenomas. These data indicate that NCAM 140 is a constituent of the cell surface of endocrine cells in both normal human adenohypophysis and its tumors. Since prolactinomas express very low levels of NCAM 140 compared to other hypophyseal tumors its virtual absence could be used for differential diagnosis. A combined analysis of NCAM, SYN and NSE could be useful to characterize inactive adenomas which are not immunoreactive for pituitary hormones and which may contain no or only low levels of the alpha chain of the glycoprotein hormones.  相似文献   

11.
The neural cell adhesion molecule (NCAM) mediates cell adhesion and signal transduction through trans-homophilic- and/or cis-heterophilic-binding mechanisms. Intraventricular infusions of anti-NCAM have revealed a functional requirement of NCAM for the consolidation of memory in rats and chicks in a specific interval 6-8 h after training. We have now extended these studies to a synthetic peptide ligand of NCAM (C3) with an affinity for the IgI domain and the capability of inhibiting NCAM-mediated neurite outgrowth in vitro. Intraventricular administration of a single 5 microg bolus of C3 strongly inhibited recall of a passive avoidance response in adult rats, when given during training or in the 6-8-h posttraining period. The effect of C3 on memory consolidation was similar to that obtained with anti-NCAM as the amnesia was not observed until the 48-h recall time. The unique amnesic action of C3 during training could be related to disrupted NCAM internalization following training. In the 3-4-h posttraining period NCAM 180, the synapse-associated isoform, was down-regulated in the hippocampal dentate gyrus. This effect was mediated by ubiquitination and was prevented by C3 administration during training. These findings indicate NCAM to be involved in both the acquisition and consolidation of a passive avoidance response in the rat. Moreover, the study provides the first in vivo evidence for NCAM internalization in learning and identifies a synthetic NCAM ligand capable of modulating memory processes in vivo.  相似文献   

12.
G J Cole  R Akeson 《Neuron》1989,2(2):1157-1165
The neural cell adhesion molecule (N-CAM) plays an integral role in cell interactions during neural development, with the binding of heparan sulfate proteoglycan to the amino-terminal region of N-CAM being required for N-CAM function. In the present study we have used synthetic peptides (HBD-1 and HBD-2), derived from the primary amino acid sequence of rat N-CAM, to identify the region of N-CAM that binds heparan sulfate. The 28 amino acid HBD-1 synthetic peptide was shown to bind both [3H]heparin and dissociated retinal cells. Retinal cells also attach to a substratum of HBD-2 peptide, but fail to bind to a control peptide containing a scrambled amino acid sequence of HBD-2. The HBD-2 peptide also inhibits retinal cell adhesion to N-CAM, demonstrating the physiological importance of the amino acid sequence encoded by the HBD peptide. These data therefore permit the localization of a heparin binding domain to a 17 amino acid region of immunoglobulin-like loop 2.  相似文献   

13.
The neural cell adhesion molecule NCAM and its glycosylation with polysialic acid (polySia) are crucially involved in proliferation, migration and differentiation of neural progenitors. Modification with polySia, homophilic and heterophilic interactions set the function of NCAM, but little is known on their interplay. We have shown recently that removal of polySia induces neuronal differentiation via heterophilic NCAM interactions at cell contacts between SH-SY5Y neuroblastoma cells. Here we analyze the additional impact of NCAM-positive fibroblasts as a ligand-presenting cellular environment, a model often used to demonstrate the neuritogenic effect of homophilic NCAM interactions. Native SH-SY5Y cells did not respond to interactions with fibroblast NCAM. However, after induction of neuronal differentiation by retinoic acid the previously ineffective NCAM signals activated extracellular signal-regulated kinase (ERK) and promoted neuritogenesis. Removal of polySia increased neuritogenesis in retinoic acid-treated cells additive to the NCAM substrate effect. The change in responsiveness to substrate NCAM was associated with a rearrangement of polysialylated NCAM away from its enrichment at homotypic cell-cell contacts and with the appearance of non-polysialylated NCAM, i.e. changes facilitating NCAM interactions with the substrate. Thus, heterophilic and homophilic NCAM interactions are integrated into the cell's response yet they have the capacity to independently trigger neuritogenesis. The actual occurrence of each of these interactions, however, depends on the cellular context, targeted cell surface presentation of NCAM and the dynamic regulation of its modification by polysialic acid. In summary, this study reveals how the complex interplay of NCAM interactions and polysialylation provides an elaborate system to regulate neuritogenesis.  相似文献   

14.
The neural cell adhesion molecule (NCAM) is pivotal in neural development, regeneration, and learning. Here we characterize two peptides, termed P1-B and P2, derived from the homophilic binding sites in the first two N-terminal immunoglobulin (Ig) modules of NCAM, with regard to their effects on neurite extension and adhesion. To evaluate how interference of these mimetic peptides with NCAM homophilic interactions in cis influences NCAM binding in trans, we employed a coculture system in which PC12-E2 cells were grown on monolayers of fibroblasts with or without NCAM expression and the rate of neurite outgrowth subsequently was analyzed. P2, but not P1-B, induced neurite outgrowth in the absence of NCAM binding in trans. When PC12-E2 cells were grown on monolayers of NCAM-expressing fibroblasts, the effect of both P1-B and P2 on neurite outgrowth was dependent on peptide concentrations. P1-B and P2 acted as conventional antagonists, agonists, and reverse agonists of NCAM at low, intermediate, and high peptide concentrations, respectively. The demonstrated in vitro triple pharmacological effect of mimetic peptides interfering with the NCAM homophilic cis binding will be valuable for the understanding of the actions of these mimetics in vivo.  相似文献   

15.
Polysialic acid (polySia), an alpha2,8-linked polymer of N-acetylneuraminic acid, represents an essential regulator of neural cell adhesion molecule (NCAM) functions. Two polysialyltransferases, ST8SiaII and ST8SiaIV, account for polySia synthesis, but their individual roles in vivo are still not fully understood. Previous in vitro studies defined differences between the two enzymes in their usage of the two NCAM N-glycosylation sites affected and suggested a synergistic effect. Using mutant mice, lacking either enzyme, we now assessed in vivo the contribution of ST8SiaII and ST8SiaIV to polysialylation of NCAM. PolySia-NCAM was isolated from mouse brains and trypsinized, and polysialylated glycopeptides as well as glycans were analyzed in detail. Our results revealed an identical glycosylation and almost complete polysialylation of N-glycosylation sites 5 and 6 in polySia-NCAM irrespective of the enzyme present. The same sets of glycans were substituted by identical numbers of polySia chains in vivo, the length distribution of which, however, differed with the enzyme setting. Expression of ST8SiaIV alone led to higher amounts of short polySia chains and gradual decrease with length, whereas exclusive action of ST8SiaII evoked a slight reduction in long polySia chains only. These variations were most pronounced at N-glycosylation site 5, whereas the polysialylation pattern at N-glycosylation site 6 did not differ between NCAM from wild-type and ST8SiaII- or ST8SiaIV-deficient mice. Thus, our fine structure analyses suggest a comparable quality of polysialylation by ST8SiaII and ST8SiaIV and a distinct synergistic action of the two enzymes in the synthesis of long polySia chains at N-glycosylation site 5 in vivo.  相似文献   

16.
Pulmonary endocrine cells of Syrian golden hamster were stained for neural cell adhesion molecule (NCAM) with indirect fluorescent immunostaining and observed with a confocal laser scanning microscope equipped with an argon laser. Sections 100 m thick of hamster lung fixed with phosphate-buffered 4% paraformaldehyde were prepared. The sections were incubated with rat monoclonal antibody against NCAM, followed by fluorescence-labeled antibody against rat immunoglobulin. Some were doubly immunostained for NCAM and one of the following endocrine markers: neuron-specific enolase, calcitonin gene-related peptide and serotonin. Expression of NCAM in the hamster airway epithelium was seen in cell nests resembling neuroepithelial bodies (NEBs). NCAM immunostaining was positive at the lateral cell borders between the cells composing the nest, but negative at the border with the adjacent, presumably non-endocrine cells. Double immunostaining confirmed that the grouped cells with NCAM immunoreactivity were of an endocrine nature, but that single endocrine cells did not show NCAM immunoreactivity. An electron microscopic study with NCAM immunostaining confirmed the light microscopic study. These suggest that NCAM expression could be important for the morphogenesis of NEBs. A confocal laser microscope was used to make theee-dimensional images of NEBs after NCAM immunostaining and the spatial interaction between NEBs and the surrounding microenvironment was studied.  相似文献   

17.
To evaluate the contributions of the pre- versus postsynaptic expression of NCAM in regulation of synaptic efficacy, we cultured dissociated hippocampal cells from NCAM-deficient and wild-type mice in homo- and heterogenotypic combinations. Double recordings from synaptically coupled neurons maintained in heterogenotypic cocultures showed that synaptic strength of excitatory but not inhibitory synapses depended on expression of NCAM post- but not presynaptically. This correlated with higher levels of potentiation and synaptic coverage of NCAM-expressing neurons compared to NCAM-deficient neurons in heterogenotypic cocultures. Synaptic density was the same in homogenotypic cultures of NCAM-deficient and wild-type neurons as well as in heterogenotypic cocultures in which glutamate receptors were blocked. These observations indicate that the relative levels of postsynaptic NCAM expression control synaptic strength in an activity-dependent manner by regulating the number of synapses.  相似文献   

18.
Transmembrane forms of neural cell adhesion molecule (NCAM140, NCAM1801) are key regulators of neuronal development. The extracellular domain of NCAM can occur as a soluble protein in normal brain, and its levels are elevated in neuropsychiatric disorders, such as schizophrenia; however the mechanism of ectodomain release is obscure. Ectodomain shedding of NCAM140, releasing a fragment of 115 kD, was found to be induced in NCAM‐transfected L‐fibroblasts by the tyrosine phosphatase inhibitor pervanadate, but not phorbol esters. Pervanadate‐induced shedding was mediated by a disintegrin metalloprotease (ADAM), regulated by ERK1/2 MAP kinase. In primary cortical neurons, NCAM was shed at high levels, and the metalloprotease inhibitor GM6001 significantly increased NCAM‐dependent neurite branching and outgrowth. Moreover, NCAM‐dependent neurite outgrowth and branching were inhibited in neurons isolated from a transgenic mouse model of NCAM shedding. These results suggest that regulated metalloprotease‐induced ectodomain shedding of NCAM down‐regulates neurite branching and neurite outgrowth. Thus, increased levels of soluble NCAM in schizophrenic brain have the potential to impair neuronal connectivity. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

19.
The neural cell adhesion molecule, NCAM, is concentrated in synaptic regions and thus may contribute to the formation and maintenance of connections between brain cells. We present evidence that the cytoplasmic domain of NCAM can be experimentally modified by the intracellular calcium-dependent proteinase, calpain. This degradation could provide a mechanism for rapidly uncoupling and reorganizing synaptic contacts.  相似文献   

20.
The Ca2(+)-independent neural cell adhesion molecule, NCAM, is expressed by both nerve and muscle cells and has been shown to mediate both nerve-nerve and nerve-muscle cell interaction. A role for NCAM in muscle-muscle cell interaction has been proposed but not demonstrated. Here we report evidence that NCAM is expressed by embryonic chick muscle cells during in vitro development and functions together with Ca2(+)-dependent adhesion molecules in mediating myoblast interaction during the formation of multinucleate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号