首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The renal tubular uptake of green fluorescent protein (GFP) in frog Rana temporaria was studied by laser confocal microscopy. The specific green fluorescence was revealed in the proximal tubule cells 30 min after intravenous GFP injection. The GFP fluorescence was distributed predominantly in the apical part of the cytoplasm in the form of the intensively fluorescing vesicles. The GFP injections increased dose-dependently the GFP tubular uptake. This was confirmed by the quantitative assessment of intensity of the specific fluorescence, its relative vesicular density, and by correlation analysis. Preliminary administration of arginine vasotocin into the dorsal lymphatic sac decreased significantly the GFP absorption. The effect of arginine vasotocin was inhibited by pretreatment a vasopressin V1-receptor antagonist. These results suggest that a decrease in the GFP absorption is due to a fall of the AVT-dependent glomerular filtration rate and consequently a decrease in the filtered GFP amount. The effect of arginine vasotocin on the GFP absorption seems to be mediated via the V1-like receptors of preglomerular blood vessels.  相似文献   

2.
Protein reabsorption in the proximal tubules (PT) of the frog kidney was studied by immunohistochemistry, fluorescent and confocal microscopy. The yellow fluorescent protein (YFP) was introduced in combination with other proteins. Reabsorption of YFP co-injected with lysozyme or the green fluorescent protein (GFP) was indistinguishable from that of YFP injection alone. Preliminary lysozyme injection did not change YFP absorption in contrast to YFP uptake reduced after GFP pretreatment. Lysozyme loading for 4 days led to a significant reduction in YFP absorption. The results show that receptor-mediated endocytosis in the frog kidney depends on the molecular nature of absorbable ligands, conditions of their competitive absorption and lysosomal accumulation in PT epithelial cells.  相似文献   

3.
Intestine absorption of intact green fluorescent protein (GFP) and its following accumulation in the renal proximal tubule cells after its intragastric administration have been established by confocal microscopy in the rat and frog. Reabsorbed GFP was revealed in the endosomes and lysosomes of the proximal tubule cells by the methods of GFP photooxidation and immunofluorescent microscopy. The GFP intestine absorption rate and GFP accumulation in the kidney were significantly higher in the frog than in the rat. No specific fluorescence was revealed in the liver and colon cells after the GFP intragastric administration. The data obtained indicate the ability of the small intestine in the frog and rat to absorb intact proteins and an important role of the kidney in exogenous protein metabolism.  相似文献   

4.
The renal tubular uptake of green fluorescent protein (GFP) after its bolus intravenous injection was studied in both frogs and rats. GFP fluorescence in the proximal tubule (PT) was revealed by fluorescent and confocal microscopy. Granular GFP fluorescence was observed nearby in the apical membrane of PT cells featuring distribution over the cytoplasm. GFP was internalized into endosomes and lysosomes as determined by immunocytochemistry in frogs. The tubular uptake and accumulation of GFP were dose- and time-dependent in both rats and frogs. Intralymphatic sac injection of arginine vasotocin (AVT) decreased the uptake of GFP in hydrated frogs. A high negative correlation between the AVT dose and the uptake of GFP was revealed. The effect of AVT was inhibited by a V(1)-receptor antagonist. A noted decrease in the average number of fluorescent PT profiles per kidney section and their irregular distribution after AVT injections suggest that not all of the glomeruli or preglomerular vessels are equally responsive to AVT. GFP may serve as a good marker for tubular uptake and intracellular traffic in the amphibian kidney for use in in vivo studies.  相似文献   

5.
Active transport of sodium ions across the isolated abdominal skin of the frog Rana temporaria after application of arginine-vasotocin (AVT) and 1-deamino-arginine-vasotocin (1dAVT) was studied by measurement of the short-circuit current (SCC). The maximal increase in the SCC values (26 and 19 mk/cm2) was observed after addition of 10 nM AVT or 100 nM 1dAVT, respectively, to the frog skin basal surface. An increase of concentration of AVT to 100 nM and of 1dAVT to 1 μM terminated the sodium transport in the frog skin. A preliminary addition of an antagonist of arginine-vasopressin Via-receptors to the Ringer’s solution at the frog skin basal surface led to a rise in the SCC values in response to administration of ineffective doses of AVT or 1dAVT. V2-receptor antagonists did not affect the frog skin reaction to administration of these doses of AVT of 1dAVT.  相似文献   

6.
Potato virus X (PVX) has been used as an expression vector to target the green fluorescent protein (GFP) from the jellyfish Aequorea victoria to the endoplasmic reticulum (ER) of tobacco (Nicotiana clevelandii L.) leaves. Expression of free GFP resulted in strong cytoplasmic fluorescence with organelles being imaged in negative contrast. Translocation of GFP into the lumen of the ER was mediated by the use of the sporamin signal peptide. Retention of GFP in the ER was facilitated by the splicing of the ER retrieval/retention tetrapeptide, KDEL to the carboxy terminus of GFP. Fluorescence of GFP was restricted to a labile cortical network of ER tubules with occasional small lamellae and to streaming trans-vacuolar strands. Secretion of ER-targeted GFP was inhibited both by cold shock and low concentrations of the secretory inhibitor brefeldin A. However, both prolonged cold and prolonged incubation in brefeldin A resulted in the recovery of secretory capability. In leaves infected with the GFP-KDEL construct, high concentrations of brefeldin A induced the tubular network of cortical ER to transform into large lamellae or sheets which reverted to the tubular network on removal of the drug. Received: 8 October 1998 / Accepted: 16 November 1998  相似文献   

7.
We show that a pH-sensitive derivative of the green fluorescent protein, designated ratiometric GFP, can be used to measure intracellular pH (pHi) in both gram-positive and gram-negative bacterial cells. In cells expressing ratiometric GFP, the excitation ratio (fluorescence intensity at 410 and 430 nm) is correlated to the pHi, allowing fast and noninvasive determination of pHi that is ideally suited for direct analysis of individual bacterial cells present in complex environments.  相似文献   

8.
The green fluorescent protein (GFP) holds promise as a field-level transgene marker. One obstacle to the use of GFP is fluorescence variability observed within leaf canopies. In growth chamber and field experiments, GFP fluorescence in transgenic oilseed rape (Brassica napus) was shown to be variable at each leaf position over time and among different leaves on the same plant. A leaf had its highest GFP fluorescence after emergence and, subsequently, its fluorescence intensity decreased. GFP fluorescence intensity was directly correlated with the concentration of soluble protein. The concentration of the genetically linked recombinant Bacillus thuringiensis (Bt) cry1Ac endotoxin protein also was examined, and GFP fluorescence was positively correlated with Bt throughout development. The results show that GFP can be used as an accurate transgene marker but that aspects of plant developmental should be taken into account when interpreting fluorescence measurements.Communicated by M.C. Jordan  相似文献   

9.
We isolated and characterized a green fluorescent protein (GFP) from the sea cactus Cavernularia obesa. This GFP exists as a dimer and has absorption maxima at 388 and 498 nm. Excitation at 388 nm leads to blue fluorescence (456 nm maximum) at pH 5 and below, and green fluorescence (507 nm maximum) at pH 7 and above, and the GFP is remarkably stable at pH 4. Excitation at 498 nm leads to green fluorescence (507 nm maximum) from pH 5 to pH 9. We introduced five amino acid substitutions so that this GFP formed monomers rather than dimers and then used this monomeric form to visualize intracellular pH change during the phagocytosis of living cells by use of fluorescence microscopy. The intracellular pH change is visualized by use of a simple long‐pass emission filter with single‐wavelength excitation, which is technically easier to use than dual‐emission fluorescent proteins that require dual‐wavelength excitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Kinetics of net phosphate (Pi) uptake was measured on intact ectomycorrhizal and non‐mycorrhizal Pinus sylvestris seedlings using a semihydroponic cultivation method. The depletion of Pi in a nutrient solution was assessed over a 160–0.2 μM Pi gradient. Growth of the pine seedlings was P limited and measurements were performed 7 and 9 weeks after inoculation. Three ectomycorrhizal fungi were studied: Paxillus involutus, Suillus bovinus and Thelephoraterrestris. Pi uptake was extremely fast in plants colonised by P. involutus. The Pi concentration dropped below 0.2 μM within 4–5 h. In plants colonised with S. bovinus this occurred in 5–6 h and in plants associated with T. terrestris 8 h were needed to run through the whole concentration range. Non‐mycorrhizal plants of similar size and nutrient status decreased Pi to a concentration between 1 and 2 μM in 18 h. Data were curve fitted to a two‐phase Michaelis‐Menten equation. The apparent kinetic constants, Km and Vmax, for the high affinity Pi uptake system of the pine roots could be estimated accurately. Vmax of this system was up to 7 times higher in pines associated with P. involutus than in non‐mycorrhizal seedlings. The intact extraradical mycelium greatly increased the absorption surface area of the roots (Vmax). Non‐mycorrhizal plants had a Km between 7.8 and 16.4 μM Pi. Plants mycorrhizal with P. involutus had Km values between 2.4 and 7.2, plants colonised with S. bovinus had a Km between 5.1 and 12.3, and seedlings associated with T. terrestris had a Km from 4.6 to 10.1 μM Pi. All 3 ectomycorrhizal fungi had a strong impact on the Pi absorption capacity of the pine seedlings. The results also demonstrated that there is substantial heterogeneity in kinetic parameters among the different mycorrhizal root systems.  相似文献   

11.
Oscillations in the phosphate (Pi) uptake rates for three species of green algae were examined in a P‐limited cyclostat. For Ankistrodesmus convolutus Corda and Chlorella vulgaris Beyerinck, the Pi uptake rates increased during the daytime and decreased at night. In contrast, Chlamydomonas sp. exhibited the opposite uptake pattern. Cell densities also oscillated under a light:dark cycle, dividing at a species‐specific timing rather than continuously. In general, the cell densities exhibited an inverse relationship with the Pi uptake rates. A competition experiment between A. convolutus and C. vulgaris in a P‐limited cyclostat resulted in the dominance of C. vulgaris, regardless of the relative initial cell concentrations. Chlorella vulgaris also dominated in a mixed culture with Chlamydomonas sp., irrespective of the initial seeding ratio and dilution rate. However, Chlamydomonas sp. and A. convolutus coexisted in the competition experiment with gradual decrease of Chlamydomonas sp. when equally inoculated. Mathematical expressions of the oscillations in the Pi uptake rate and species‐specific cell division gate were used to develop a simulation model based on the Droop equation. The simulation results for each of the species conformed reasonably well to the experimental data. The results of the competition experiments also matched the competition simulation predictions quite well, although the experimental competition was generally more delayed than the simulations. In conclusion, the model simulation that incorporated the effect of diel rhythms in nutrient uptake clearly demonstrated that species diversity could be enhanced by different oscillation patterns in resource uptake, even under the condition of limitation by the same resource.  相似文献   

12.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V m), intracellular K+, Cl-, and Na+ activities (a i k, a Cl i and a Na i ), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V m was -33±1 mV. l-alanine uptake first depolarized V m by 2±0.2 mV and then hyperpolarized V m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a Na i increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a K i did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V m, but now a K i decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V m by l-alanine uptake also resulted in a 38% decrease of a Cl i from 20±2 to 12±3 mm (P < 0.001). Changes in V m and V ClV m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl with the V m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a Cl i remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a K i is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V m due to increased K+ conductance. The hyperpolarization of V m during l-alanine uptake provides electromotive force to decrease a Cl i . The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

13.
The changes of DHN1 expression and subcellular distribution in A. delicisoa cells under osmotic stress were studied by using GFP as a reporter molecule. Through creating the Xba I and BamH I restriction sites at the ends of dhn1 by PCR, the expression vector for the fusion protein DHN1-mGFP4 was constructed by cloning dhn1 into plasmid pBIN-35SmGFP4. Then the DHN1-mGFP4 expression vector was transformed into A. delicisoa suspension cells by microprojectile bombardment method. Bright green fluorescence of GFP which shows the high-level expression of DHN1-mGFP4 was visualized after culture for 10 h. However, the green fluorescence was only located within the nucleus. By increasing the culture medium osmotic potential, the green fluorescence was visualized in the cytoplasm (mainly around the plasma membranes). The generation of GFP fluorescence in the cytoplasm was also promoted by increasing the medium osmotic potential. Moreover, GFP green fluorescence was abolished by protein synthesis inhibitor dicyclohexylcarbodiimid, indicating that the cytoplasmic DHN1 was newly synthesized under osmotic stress. Furthermore, ABA promoted the presence of green fluorescence in the cytoplasm, and the GFP fluorescence was visualized within a shorter time under a higher osmotic potential.  相似文献   

14.
15.
Low expression and instability during isolation are major obstacles preventing adequate structure‐function characterization of membrane proteins (MPs). To increase the likelihood of generating large quantities of protein, C‐terminally fused green fluorescent protein (GFP) is commonly used as a reporter for monitoring expression and evaluating purification. This technique has mainly been restricted to MPs with intracellular C‐termini (Cin) due to GFP's inability to fluoresce in the Escherichia coli periplasm. With the aid of Glycophorin A, a single transmembrane spanning protein, we developed a method to convert MPs with extracellular C‐termini (Cout) to Cin ones providing a conduit for implementing GFP reporting. We tested this method on eleven MPs with predicted Cout topology resulting in high level expression. For nine of the eleven MPs, a stable, monodisperse protein‐detergent complex was identified using an extended fluorescence‐detection size exclusion chromatography procedure that monitors protein stability over time, a critical parameter affecting the success of structure‐function studies. Five MPs were successfully cleaved from the GFP tag by site‐specific proteolysis and purified to homogeneity. To address the challenge of inefficient proteolysis, we explored expression and purification conditions in the absence of the fusion tag. Contrary to previous studies, optimal expression conditions established with the fusion were not directly transferable for overexpression in the absence of the GFP tag. These studies establish a broadly applicable method for GFP screening of MPs with Cout topology, yielding sufficient protein suitable for structure‐function studies and are superior to expression and purification in the absence GFP fusion tagging.  相似文献   

16.
By constructing the expression system for fusion protein of GFPmut1 (a green fluorescent protein mutant) with the hyperthermophilic xylanase obtained from Dictyoglomus thermophilum Rt46B.1, the effects of temperature on the fluorescence of GFP and its relationship with the activities of GFP-fused xylanase have been studied. The fluorescence intensities of both GFP and GFP-xylanase have proved to be thermally sensitive, with the thermal sensitivity of the fluorescence intensity of GFP-xylanase being 15% higher than that of GFP. The lost fluorescence intensity of GFP inactivated at high temperature of below 60°C in either single or fusion form can be completely recovered by treatment at 0°C. By the fluorescence recovery of GFP domain at low temperature, the ratios of fluorescence intensity to xylanase activity (R gfp/A xyl) at 15°C and 37°C have been compared. Even though the numbers of molecules of GFP and xylanase are equivalent, the R gfp/A xyl ratio at 15°C is ten times of that at 37°C. This is mainly due to the fact that lower temperature is more conducive to the correct folding of GFP than the hyperthermophilic xylanase during the expression. This study has indicated that the ratio of GFP fluorescence to the thermophilic enzyme activity for the fusion proteins expressed at different temperatures could be helpful in understanding the folding properties of the two fusion partners and in design of the fusion proteins.  相似文献   

17.
The effect of increasing protein load on subsequent receptor-mediated protein uptake was studied in the kidney of the common frog Rana temporaria L. Results of in vivo experiments were analyzed in fixed kidney sections using fluorescent or confocal microscopy and immunohistochemistry. Lysozyme was used for daily tubular loading in short-term experiments. Reabsorption of yellow fluorescent protein (YFP) in the proximal tubule (PT) was tested 60 min after introduction into the dorsal lymphatic sac. YFP uptake decreased progressively with increasing duration of lysozyme preload from 2 to 4 days. Lysozyme loading and single protein injections did not change the morphological characteristics of frog glomeruli and PTs, as shown by light and electron microscopy and morphometric analysis. Cessation of loading led to a decrease in the amount of lysozyme accumulated in PT cells. Reduced YFP uptake gradually recovered after cessation of the 4-day load. Restoration of YFP reabsorption was accompanied by increasing expression of endocytic receptors, megalin and cubilin. Based on the data obtained, the frog model can be successfully used for studying both morphological and functional changes in the nephron caused by tubular or glomerular proteinuria and molecular mechanisms involved in the process of renal protein reabsorption.  相似文献   

18.
The specificity of S-RNase-based self-incompatibility (SI) is controlled by two S-locus genes, the pistil S-RNase gene and the pollen S-locus-F-box gene. S-RNase is synthesized in the transmitting cell; its signal peptide is cleaved off during secretion into the transmitting tract; and the mature “S-RNase”, the subject of this study, is taken up by growing pollen tubes via an as-yet unknown mechanism. Upon uptake, S-RNase is sequestered in a vacuolar compartment in both non-self (compatible) and self (incompatible) pollen tubes, and the subsequent disruption of this compartment in incompatible pollen tubes correlates with the onset of the SI response. How the S-RNase-containing compartment is specifically disrupted in incompatible pollen tubes, however, is unknown. Here, we circumvented the uptake step of S-RNase by directly expressing S2-RNase, S3-RNase and non-glycosylated S3-RNase of Petunia inflata, with green fluorescent protein (GFP) fused at the C-terminus of each protein, in self (incompatible) and non-self (compatible) pollen of transgenic plants. We found that none of these ectopically expressed S-RNases affected the viability or the SI behavior of their self or non-self-pollen/pollen tubes. Based on GFP fluorescence of in vitro-germinated pollen tubes, all were sequestered in both self and non-self-pollen tubes. Moreover, the S-RNase-containing compartment was dynamic in living pollen tubes, with movement dependent on the actin–myosin-based molecular motor system. All these results suggest that glycosylation is not required for sequestration of S-RNase expressed in pollen tubes, and that the cytosol of pollen is the site of the cytotoxic action of S-RNase in SI.  相似文献   

19.
The cellular chemistry of metallopeptide complexes designed to target and inactivate an HIV Rev response element (RRE) RNA sequence in vivo has been evaluated by use of an efficient cellular fluorescence assay. Transcribed messenger RNA encoding the green fluorescent protein (GFP) that includes a target RNA sequence is sensitive to cleavage chemistry mediated by metal derivatives of GGH(G) x TRQARRNRR RRWRERQR (x = 0, 1, 2, 4, 6). This results in a significant decrease in expression of GFP that can be quantified by fluorimetry. Optimal inactivation of the target RRE RNA was achieved with linkers where x = 0 or 1. Neither the Rev control peptide (lacking metal-binding or linker sequences) nor the metal-binding motif alone had any significant effect. Consequently, both the cleavage motif and the RNA targeting motif are essential to promote cellular cleavage of the target RRE RNA. However, target inactivation was also observed in experiments with metal-free peptide, consistent with recruitment of intracellular metal ion by the peptide following cellular uptake, with subsequent cleavage of the RRE target RNA. The RRE RNA cleavage activities of metallopeptide complexes were further confirmed by in vitro experiments and mammalian cell assays.  相似文献   

20.
H1 histones bind to linker DNA. H1t (H1f6), a testis‐specific linker histone variant, is present in pachytene spermatocytes and spermatids. The expression of H1t histone coincides with the acquisition of metaphase I competence in pachytene spermatocytes. Here we report the generation of H1t‐GFP transgenic mice. The H1t‐GFP (H1 histone testis‐green fluorescence protein) fusion protein expression recapitulates the endogenous H1t expression pattern. This protein appears first in mid pachytene spermatocytes in stage V seminiferous tubules, persists in round spermatids and elongating spermatids, but is absent in elongated spermatids. The strong green fluorescence signal, due to the high abundance of H1t‐GFP, is maintained in spermatocytes after induction towards metaphase I through treatment with okadaic acid. Therefore, H1t‐GFP can be used as a visual marker for monitoring the progression of meiosis in vitro and in vivo, as well as fluorescence‐activated cell sorting (FACS) sorting of germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号