首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The dsRNA protein kinase PKR: virus and cell control   总被引:12,自引:0,他引:12  
García MA  Meurs EF  Esteban M 《Biochimie》2007,89(6-7):799-811
  相似文献   

3.
4.
5.
The interferon-induced RNA-dependent protein kinase (PKR) is postulated to have an important regulatory role in the synthesis of viral and cellular proteins. Activation of the enzyme requires the presence of a suitable activator RNA and is accompanied by an autophosphorylation of PKR. Active PKR phosphorylates the alpha subunit of protein synthesis eukaryotic initiation factor 2, resulting in an inhibition of translation initiation. The mechanism of autophosphorylation is not well understood. Here we present evidence that the autophosphorylation of human PKR can involve intermolecular phosphorylation events, i.e., one PKR protein molecule phosphorylating a second PKR molecule. Both wild-type PKR and the point mutant PKR(K296R) synthesized in vitro were phosphorylated, even though PKR(K296R) was deficient in kinase catalytic activity. Phosphorylation of both wild-type PKR and PKR(K296R) was inhibited in the presence of 2-aminopurine. Furthermore, purified human recombinant PKR(K296R) was a substrate for the purified wild-type human PKR kinase. This intermolecular phosphorylation of mutant PKR(K296R) by wild-type PKR was dependent on double-stranded RNA and was inhibited by 2-aminopurine. Finally, PKR mRNA was capable of mediating an autoactivation of wild-type PKR kinase autophosphorylation in vitro.  相似文献   

6.
Indomethacin, a cyclooxygenase‐1 and ‐2 inhibitor widely used in the clinic for its potent anti‐inflammatory/analgesic properties, possesses antiviral activity against several viral pathogens; however, the mechanism of antiviral action remains elusive. We have recently shown that indomethacin activates the double‐stranded RNA (dsRNA)‐dependent protein kinase R (PKR) in human colon cancer cells. Because of the important role of PKR in the cellular defence response against viral infection, herein we investigated the effect of indomethacin on PKR activity during infection with the prototype rhabdovirus vesicular stomatitis virus. Indomethacin was found to activate PKR in an interferon‐ and dsRNA‐independent manner, causing rapid (< 5 min) phosphorylation of eukaryotic initiation factor‐2 α‐subunit (eIF2α). These events resulted in shutting off viral protein translation and blocking viral replication (IC50 = 2 μM) while protecting host cells from virus‐induced damage. Indomethacin did not affect eIF2α kinases PKR‐like endoplasmic reticulum‐resident protein kinase (PERK) and general control non‐derepressible‐2 (GCN2) kinase, and was unable to trigger eIF2α phosphorylation in the presence of PKR inhibitor 2‐aminopurine. In addition, small‐interfering RNA‐mediated PKR gene silencing dampened the antiviral effect in indomethacin‐treated cells. The results identify PKR as a critical target for the antiviral activity of indomethacin and indicate that eIF2α phosphorylation could be a key element in the broad spectrum antiviral activity of the drug.  相似文献   

7.
The protein kinase PKR is a major player in the cellular antiviral response, acting mainly by phosphorylation of the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF2-alpha) to block de novo protein synthesis. PKR activation requires binding of double-stranded RNA or PACT/RAX proteins to its regulatory domain. Since several reports have demonstrated that translation is inhibited in apoptosis, we investigated whether PKR and eIF2-alpha phosphorylation contribute to this process. We show that PKR is proteolysed and that eIF2-alpha is phosphorylated at the early stages of apoptosis induced by various stimuli. Both events coincide with the onset of caspase activity and are prevented by caspase inhibitors. Using site-directed mutagenesis we show that PKR is specifically proteolysed at Asp(251) during cellular apoptosis. This site is cleaved in vitro by recombinant caspase-3, caspase-7, and caspase-8 and not by the proinflammatory caspase-1 and caspase-11. The released kinase domain efficiently phosphorylates eIF2-alpha at the cognate Ser(51) residue, and its overexpression in mammalian cells impairs the translation of its own mRNA and of reporter mRNAs. Our results demonstrate a new and caspase-dependent activation mode for PKR, leading to eIF2-alpha phosphorylation and translation inhibition in apoptosis.  相似文献   

8.
9.
PKR (protein kinase, RNA activated) is an interferon (IFN)-induced serine-threonine protein kinase and is one of the key mediators in IFN's cellular actions. Although double-stranded (ds) RNA is the most relevant PKR activator during viral infections, PACT acts as a stress-modulated activator of PKR and is an important regulator of PKR dependent signaling pathways in the absence of viral infections. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In the present study, we have investigated the functional significance of PACT-PACT interaction in mediating PKR activation in response to cellular stress. Our results suggest that enhanced interaction between PACT molecules when PACT is phosphorylated in response to stress signals on serines 246 and 287 is essential for efficient PKR activation. Using a point mutant of PACT that is deficient in PACT-PACT interaction, we demonstrate that PACT-PACT interaction is essential for efficient PKR activation.  相似文献   

10.
Taylor SS  Haste NM  Ghosh G 《Cell》2005,122(6):823-825
The antiviral RNA-dependent protein kinase, PKR, binds to viral double-stranded RNA in the cell and halts protein synthesis by phosphorylating the alpha subunit of the translation initiation factor eIF2. In this issue of Cell, two complementary papers Dar et al. (2005) and Dey et al. (2005) address the interaction between PKR and eIF2alpha. The structures of eIF2alpha bound to PKR reveal that PKR forms a dimer, the interface of which is essential for kinase activation, and demonstrate how this protein substrate docks to its kinase. The structures, coupled with mutagenesis analysis, also demonstrate how phosphorylation of the activation loop can allosterically couple two distal regions, the dimerization and substrate recognition interfaces.  相似文献   

11.
Vaccinia virus has evolved multiple mechanisms to counteract the interferon-induced antiviral host cell response. Recently, two vaccinia virus gene products were shown to interfere with the activity of the double-stranded RNA-dependent protein kinase (PKR): the K3L gene product and the E3L gene product. We have evaluated the efficiency by which these gene products inhibit PKR and whether they act in a synergistic manner. The effects of the two vaccinia virus gene products were compared in an in vivo system in which translation of a reporter gene (dihydrofolate reductase or eukaryotic translation initiation factor 2 alpha [eIF-2 alpha]) was inhibited because of the localized activation of PKR. In this system, the E3L gene product, and to a lesser extent the K3L gene product, potentiated translation of the reporter gene and inhibited eIF-2 alpha phosphorylation. Analysis in vitro demonstrated that the E3L gene product inhibited PKR approximately 50- to 100-fold more efficiently than the K3L gene product. However, further studies demonstrated that the mechanism of action of these two inhibitors was different. Whereas the E3L inhibitor interfered with the binding of the kinase to double-stranded RNA, the K3L inhibitor did not. We propose that the K3L inhibitor acts through its homology to eIF-2 alpha to interfere with the interaction of eIF-2 alpha with PKR. The two inhibitors did not display a synergistic effect on translation or eIF-2 alpha phosphorylation. In addition, neither K3L nor E3L expression detectably altered cellular protein synthesis.  相似文献   

12.
Zhu R  Zhang YB  Zhang QY  Gui JF 《Journal of virology》2008,82(14):6889-6901
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2alpha. The interaction between PoPKR and eIF2alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.  相似文献   

13.
14.
The double-stranded (ds) RNA-dependent protein kinase (PKR) regulates protein synthesis by phosphorylating the alpha subunit of eukaryotic initiation factor-2. PKR is activated by viral induced dsRNA and thought to be involved in the host antiviral defense mechanism. PKR is also activated by various nonviral stresses such as growth factor deprivation, although the mechanism is unknown. By screening a mouse cDNA expression library, we have identified an ubiquitously expressed PKR-associated protein, RAX. RAX has a high sequence homology to human PACT, which activates PKR in the absence of dsRNA. Although RAX also can directly activate PKR in vitro, overexpression of RAX does not induce PKR activation or inhibit growth of interleukin-3 (IL-3)-dependent cells in the presence of IL-3. However, IL-3 deprivation as well as diverse cell stress treatments including arsenite, thapsigargin, and H2O2, which are known to inhibit protein synthesis, induce the rapid phosphorylation of RAX followed by RAX-PKR association and activation of PKR. Therefore, cellular RAX may be a stress-activated, physiologic activator of PKR that couples transmembrane stress signals and protein synthesis.  相似文献   

15.
The NS5A nonstructural protein of hepatitis C virus (HCV) has been shown to inhibit the cellular interferon (IFN)-induced protein kinase R (PKR). PKR mediates the host IFN-induced antiviral response at least in part by inhibiting mRNA translation initiation through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). We thus examined the effect of NS5A inhibition of PKR on mRNA translation within the context of virus infection by using a recombinant vaccinia virus (VV)-based assay. The VV E3L protein is a potent inhibitor of PKR. Accordingly, infection of IFN-pretreated HeLa S3 cells with an E3L-deficient VV (VVDeltaE3L) resulted in increased phosphorylation levels of both PKR and eIF2alpha. IFN-pretreated cells infected with VV in which the E3L locus was replaced with the NS5A gene (VVNS5A) displayed diminished phosphorylation of PKR and eIF2alpha in a transient manner. We also observed an increase in activation of p38 mitogen-activated protein kinase in IFN-pretreated cells infected with VVDeltaE3L, consistent with reports that p38 lies downstream of the PKR pathway. Furthermore, these cells exhibited increased phosphorylation of the cap-binding initiation factor 4E (eIF4E), which is downstream of the p38 pathway. Importantly, these effects were reduced in cells infected with VVNS5A. NS5A was also found to inhibit activation of the p38-eIF4E pathway in epidermal growth factor-treated cells stably expressing NS5A. NS5A-induced inhibition of eIF2alpha and eIF4E phosphorylation may exert counteracting effects on mRNA translation. Indeed, IFN-pretreated cells infected with VVNS5A exhibited a partial and transient restoration of cellular and viral mRNA translation compared with IFN-pretreated cells infected with VVDeltaE3L. Taken together, these results support the role of NS5A as a PKR inhibitor and suggest a potential mechanism by which HCV might maintain global mRNA translation rate during early virus infection while favoring cap-independent translation of HCV mRNA during late infection.  相似文献   

16.
17.
Molecular recognition of RNA structure is key to innate immunity. The protein kinase PKR differentiates self from non-self by recognition of molecular patterns in RNA. Certain biological RNAs induce autophosphorylation of PKR, activating it to phosphorylate eukaryotic initiation factor 2α (eIF2α), which leads to inhibition of translation. Additional biological RNAs inhibit PKR, while still others have no effect. The aim of this article is to develop a cohesive framework for understanding and predicting PKR function in the context of diverse RNA structure. We present effects of recently characterized viral and cellular RNAs on regulation of PKR, as well as siRNAs. A central conclusion is that assembly of accessible long double-stranded RNA (dsRNA) elements within biological RNAs plays a key role in regulation of PKR kinase. Strategies for forming such elements include RNA dimerization, formation of symmetrical helical defects, A-form dsRNA mimicry, and coaxial stacking of helices.  相似文献   

18.
The reversible phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 (eIF2alpha) is a well-characterized mechanism of translational control in response to a wide variety of cellular stresses, including viral infection. Beside PKR, the eIF2alpha kinase GCN2 participates in the cellular response against viral infection by RNA viruses with central nervous system tropism. PKR has also been involved in the antiviral response against HIV-1, although this antiviral effect is very limited due to the distinct mechanisms evolved by the virus to counteract PKR action. Here we report that infection of human cells with HIV-1 conveys the proteolytic cleavage of GCN2 and that purified HIV-1 and HIV-2 proteases produce direct proteolysis of GCN2 in vitro, abrogating the activation of GCN2 by HIV-1 RNA. Transfection of distinct cell lines with a plasmid encoding an HIV-1 cDNA clone competent for a single round of replication resulted in the activation of GCN2 and the subsequent eIF2alpha phosphorylation. Moreover, transfection of GCN2 knockout cells or cells with low levels of phosphorylated eIF2alpha with the same HIV-1 cDNA clone resulted in a marked increase of HIV-1 protein synthesis. Also, the over-expression of GCN2 in cells led to a diminished viral protein synthesis. These findings suggest that viral RNA produced during HIV-1 infection activates GCN2 leading to inhibition of viral RNA translation, and that HIV-1 protease cleaves GCN2 to overcome its antiviral effect.  相似文献   

19.
Initiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs. Three stresses were studied that cause the phosphorylation of the translation initiation factor, eIF2alpha, by activating specific kinases: (i) amino acid starvation, which activates GCN2; (ii) endoplasmic reticulum (ER) stress, which activates PKR-like ER kinase, PERK kinase; and (iii) double-stranded RNA, which activates double-stranded RNA-dependent protein kinase (PKR) by mimicking viral infection. Amino acid starvation and ER stress caused transient phosphorylation of eIF2alpha during the first hour of treatment, whereas double-stranded RNA caused a sustained phosphorylation of eIF2alpha after 2 h. The effects of these treatments on IRES-mediated initiation were investigated using bicistronic mRNA expression vectors. No effect was seen for the IRESs from the mRNAs for the chaperone BiP and the protein kinase Pim-1. In contrast, translation mediated by the IRESs from the cationic amino acid transporter, cat-1, and of the cricket paralysis virus intergenic region, were stimulated 3- to 10-fold by all three treatments. eIF2alpha phosphorylation was required for the response because inactivation of phosphorylation prevented the stimulation. It is concluded that cellular stress can stimulate translation from some cellular IRESs via a mechanism that requires the phosphorylation of eIF2alpha. Moreover, there are distinct regulatory patterns for different cellular mRNAs that contain IRESs within their 5'-untranslated regions.  相似文献   

20.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号