首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have indicated that Factor IX/IXa interacts in a specific and high affinity manner with a binding site on the endothelial cell surface. In this study, the contributions of the gamma-carboxyglutamic acid-containing (GLA) and growth factor domains to the finding of Factor IX to the endothelium were assessed. While GLA-containing peptides from Factors IX, X, and prothrombin were inhibitors of 125I-Factor IX-endothelial cell binding, the GLA peptide from Factor IX was about 250-800-fold more effective than those from prothrombin and Factor X, respectively. In contrast to its relative efficacy as an inhibitor of Factor IX-cell surface interaction, the Factor IX-GLA peptide neither bound to lipid vesicles nor inhibited Factor IX-lipid interaction. A synthetic peptide comprising the entire first epidermal growth factor (EGF) exon was also an inhibitor of 125I-Factor IX-endothelial cell binding, although it did not interact with lipid vesicles. Experiments with synthetic peptides comprising each of the three loops of the first EGF domain or the entire first EGF region with specific substitutions indicated the importance of determinants in both the first and probably third loops for Factor IX-endothelial interaction. In contrast, the second loop of the first EGF domain and the first loop of the second EGF exon are probably not involved in Factor IX-endothelial interaction based on their inability to block 125I-Factor IX binding to cells. These results indicate that determinants in both the GLA and the first EGF domain contribute to the specific binding of Factor IX to the endothelial cell surface and that structural requirements for Factor IX-cell surface interaction are distinct from those for Factor IX binding to lipids.  相似文献   

2.
A family of five peptides was previously discovered by phage display techniques that binds to the human neonatal Fc receptor (FcRn) and inhibits the human IgG:human FcRn protein-protein interaction [Proc. Nat. Acad. Sci. U.S.A.2008, 105, 2337-2342]. The consensus peptide motif consists of the sequence GHFGGXY where X is preferably a hydrophobic amino acid, and also includes a disulfide bridge enclosing 11-amino acids in varying positions about the consensus sequence. We describe herein the structure-activity relationships of one of the five peptides in binding to FcRn using surface plasmon resonance and IgG:FcRn competition ELISA assays. Modifications of the peptide length, cyclization, and the incorporation of amino acid substitutions and dipeptide mimetics were studied. The most potent analogs exhibited a 50- to 100-fold improvement of in vitro activity over that of the phage-identified peptide sequence.  相似文献   

3.
A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals.  相似文献   

4.
Cdc7-Dbf4 is a conserved, two-subunit kinase required for initiating eukaryotic DNA replication. Recent studies have shown that Cdc7-Dbf4 also regulates the mitotic exit network (MEN) and monopolar homolog orientation in meiosis I (Matos, J., Lipp, J. J., Bogdanova, A., Guillot, S., Okaz, E., Junqueira, M., Shevchenko, A., and Zachariae, W. (2008) Cell 135, 662-678 and Miller, C. T., Gabrielse, C., Chen, Y. C., and Weinreich, M. (2009) PLoS Genet. 5, e1000498). Both activities likely involve a Cdc7-Dbf4 interaction with Cdc5, the single Polo-like kinase in budding yeast. We previously showed that Dbf4 binds the Cdc5 polo-box domain (PBD) via an ~40-residue N-terminal sequence, which lacks a PBD consensus binding site (S(pS/pT)(P/X)), and that Dbf4 inhibits Cdc5 function during mitosis. Here we identify a non-consensus PBD binding site within Dbf4 and demonstrate that the PBD-Dbf4 interaction occurs via a distinct PBD surface from that used to bind phosphoproteins. Genetic and biochemical analysis of multiple dbf4 mutants indicate that Dbf4 inhibits Cdc5 function through direct binding. Surprisingly, mutation of invariant Cdc5 residues required for binding phosphorylated substrates has little effect on yeast viability or growth rate. Instead, cdc5 mutants defective for binding phosphoproteins exhibit enhanced resistance to microtubule disruption and an increased rate of spindle elongation. This study, therefore, details the molecular nature of a new type of PBD binding and reveals that Cdc5 targeting to phosphorylated substrates likely regulates spindle dynamics.  相似文献   

5.
Various studies have demonstrated that Fc engineering to enhance neonatal Fc receptor (FcRn) binding is effective for elongating half-life or increasing cellular uptake of IgG. A previous study has shown that a N434H mutation to enhance FcRn binding resulted in increased binding to rheumatoid factor (RF) autoantibody, which is not desirable for therapeutic use in autoimmune disease. In this study, we first showed that all the existing Fc variants with enhanced FcRn binding also show increased RF binding, and then identified specific mutations that could be introduced to those Fc variants to reduce the RF binding. Furthermore, we generated novel Fc variants that do not increase RF binding and show half-lives of 45 d in cynomolgus monkey, which is longer than those of previously reported Fc variants. In addition, we generated novel Fc variants with antigen sweeping activity that do not increase RF binding. We expect that these novel Fc variants will be useful as antibody therapeutics against autoimmune diseases.  相似文献   

6.
The Fcγ receptor FcRn transports immunoglobulin G (IgG) so as to avoid lysosomal degradation and to carry it bidirectionally across epithelial barriers to affect mucosal immunity. Here, we identify a calmodulin-binding site within the FcRn cytoplasmic tail that affects FcRn trafficking. Calmodulin binding to the FcRn tail is direct, calcium-dependent, reversible, and specific to residues comprising a putative short amphipathic α-helix immediately adjacent to the membrane. FcRn mutants with single residue substitutions in this motif, or FcRn mutants lacking the cytoplasmic tail completely, exhibit a shorter half-life and attenuated transcytosis. Chemical inhibitors of calmodulin phenocopy the mutant FcRn defect in transcytosis. These results suggest a novel mechanism for regulation of IgG transport by calmodulin-dependent sorting of FcRn and its cargo away from a degradative pathway and into a bidirectional transcytotic route.  相似文献   

7.
Susceptibility of methionine residues to oxidation is a significant issue of protein therapeutics. Methionine oxidation may limit the product's clinical efficacy or stability. We have studied kinetics of methionine oxidation in the Fc portion of the human IgG2 and its impact on the interaction with FcRn and Protein A. Our results confirm previously published observations for IgG1 that two analogous solvent‐exposed methionine residues in IgG2, Met 252 and Met 428, oxidize more readily than the other methionine residue, Met 358, which is buried inside the Fc. Met 397, which is not present in IgG1 but in IgG2, oxidizes at similar rate as Met 358. Oxidation of two labile methionines, Met 252 and Met 428, weakens the binding of the intact antibody with Protein A and FcRn, two natural protein binding partners. Both of these binding partners share the same binding site on the Fc. Additionally, our results shows that Protein A may serve as a convenient and inexpensive surrogate for FcRn binding measurements.  相似文献   

8.
The cDNA nucleotide sequences and the deduced amino acid sequences of human corticosteroid binding globulin (hCBG), human testosterone-estradiol binding globulin (hTeBG), and rat androgen binding protein (rABP) were determined. Studies of the steroid binding sites suggest they are toward the carboxy-terminus in hTeBG and rABP and more central in hCBG. hCBG has remarkable sequence homology with members of a superfamily whose functions have diverged; these include thyroxine-binding protein, serine protease inhibitors, egg white proteins, and angiotensinogen. hTeBG and rABP have a 68% amino acid sequence identity. Hybridization studies suggest that hTeBG is probably even more closely related, if not identical, to hABP. The carboxy-terminal sequences of hTeBG and rABP are also similar to that of protein S, a vitamin-K-dependent clotting factor. There were no nucleotide or amino acid sequence homologies between hCBG, hTeBG, or rABP and other steroid binding proteins such as steroid receptors, albumin, alpha-fetoprotein, and vitamin D binding protein. We conclude that the "extracellular steroid binding proteins" and steroid receptors do not appear to have descended from a common ancestor.  相似文献   

9.
Several reports have suggested that variations of albumin concentration in the incubation medium can modulate the magnitude of transferrin binding to the cells. We have investigated this problem further using K562 cells. In the absence of human serum albumin, transferrin binding demonstrated a non-saturable curve which, upon Scatchard analysis, showed two components with high and low affinities. In the presence of 0.5% human serum albumin, the low-affinity but not the high-affinity component was totally inhibited and, thus, the binding showed a saturation plateau at transferrin concentration of 6 micrograms/ml. Increasing concentrations of human serum albumin in the incubation medium led to progressive inhibition of transferrin binding, reaching a plateau at 0.2% human serum albumin. At this concentration transferrin binding was about 12 ng/10(6) cells, corresponding to the saturation plateau for high-affinity binding. Low-affinity transferrin binding in the absence of human serum albumin could readily be displaced by subsequent addition of albumin. Similar inhibition was obtained by another serum protein, ceruloplasmin, suggesting that this inhibition is not unique to albumin and may be a common property of all proteins. Incubation at 37 degrees C with 59Fe-labeled transferrin indicated that all iron uptake occurs through high-affinity binding. We conclude that the reported variations in magnitude of transferrin binding by the cell due to variations in albumin concentration are the result of inhibition of low-affinity binding of transferrin by albumin.  相似文献   

10.
The increased number of bispecific antibodies (BsAb) under therapeutic development has resulted in a need for mouse surrogate BsAbs. Here, we describe a one-step method for generating highly pure mouse BsAbs suitable for in vitro and in vivo studies. We identify two mutations in the mouse IgG2a and IgG2b Fc region: one that eliminates protein A binding and one that enhances protein A binding by 8-fold. We show that BsAbs harboring these mutations can be purified from the residual parental monoclonal antibodies in one step using protein A affinity chromatography. The structural basis for the effects of these mutations was analyzed by X-ray crystallography. While the mutation that disrupted protein A binding also inhibited FcRn interaction, a bispecific mutant in which one subunit retained the ability to bind protein A could still interact with FcRn. Pharmacokinetic analysis of the serum half-lives of the mutants showed that the mutant BsAb had a serum half-life comparable to a wild-type Ab. The results describe a rapid method for generating panels of mouse BsAbs that could be used in mouse studies.  相似文献   

11.
Non-steroidal anti-inflammatory drugs (NSAIDs) are strongly bound to human serum albumin (HSA), mainly to sites I and II. The aim of this study was to characterize the binding site(s) of etodolac enantiomers under physiological conditions (580 μM HSA) using equilibrium dialysis. The protein binding of etodolac enantiomers, alone or in various ratios, was studied in order to evaluate the potential competition between them. Our results showed that (S)-etodolac was more strongly bound to HSA than (R)-etodolac. The displacement of one enantiomer by its antipode was observed only at high concentrations of the competitor, and was more pronounced for the (S)-form. Displacement studies of the enantiomers by specific probes of sites I and II of albumin, dansylamide, and dansylsarcosine, respectively, showed that (R)-etodolac was slightly displaced by both these probes whereas the free concentration of (S)-etodolac increased markedly in the presence of dansylsarcosine. Moreover, the binding of ligands to sites I and II is usually affected by alkaline pH, by chloride ions, and by fatty acids. For etodolac, the presence of 0.1 and 1 M chloride ions and increasing pH (5.5-9) decreased the binding of both enantiomers. The same result was obtained with addition of octanoic acid. Conversely, the addition of oleic, palmitic, or stearic acid to the protein solution increased the binding of (R)-etodolac, but decreased that of its antipode. All these findings suggest that (R)- and (S)-etodolac interact mainly with site II of HSA, and that the (R)-isomer is also bound to site I under physiological conditions. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Photobilirubin II, a stereoisomer of bilirubin, binds to human serum albumin at a single binding site (K = 2.2 x 10(6)M-1), presumably the high-affinity bilirubin-binding site. Binding in the secondary (class II) binding sites is of minor importance. The results are discussed with respect to photometabolism of bilirubin and as a possible source of error in the determination of bilirubin unbound to albumin.  相似文献   

13.
A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1–5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1–3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics.  相似文献   

14.
We describe here the functional implications of an increase in IgG binding to the neonatal Fc receptor. We have defined in a systematic fashion the relationship between enhanced FcRn binding of a humanized anti-respiratory syncytial virus (RSV) monoclonal antibody (MEDI-524) and the corresponding biological consequences in cynomolgus monkeys. The triple mutation M252Y/S254T/T256E (YTE) was introduced into the Fc portion of MEDI-524. Whereas these substitutions did not affect the ability of MEDI-524 to bind to its cognate antigen and inhibit RSV replication, they resulted in a 10-fold increase in its binding to both cynomolgus monkey and human FcRn at pH 6.0. MEDI-524-YTE was efficiently released from FcRn at pH 7.4 in both cases. We show that MEDI-524-YTE consistently exhibited a nearly 4-fold increase in serum half-life in cynomolgus monkeys when compared with MEDI-524. This constituted the largest half-life improvement described to date for an IgG in a primate. For the first time, we demonstrate that these sustained serum levels resulted in an up to 4-fold increase in lung bioavailability. Importantly, we also establish that our non-human primate model is relevant to human. Finally, we report that the YTE triple substitution provided a means to modulate the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of a humanized IgG1 directed against the human integrin alpha(v)beta3. Therefore, the YTE substitutions allow the simultaneous modulation of serum half-life, tissue distribution and activity of a given human IgG1.  相似文献   

15.
Albumin is an abundant blood protein that acts as a transporter of a plethora of small molecules like fatty acids, hormones, toxins, and drugs. In addition, it has an unusual long serum half-life in humans of nearly 3 weeks, which is attributed to its interaction with the neonatal Fc receptor (FcRn). FcRn protects albumin from intracellular degradation via a pH-dependent cellular recycling mechanism. To understand how FcRn impacts the role of albumin as a distributor, it is of importance to unravel the structural mechanism that determines pH-dependent binding. Here, we show that although the C-terminal domain III (DIII) of human serum albumin (HSA) contains the principal binding site, the N-terminal domain I (DI) is important for optimal FcRn binding. Specifically, structural inspection of human FcRn (hFcRn) in complex with HSA revealed that two exposed loops of DI were in proximity with the receptor. To investigate to what extent these contacts affected hFcRn binding, we targeted selected amino acid residues of the loops by mutagenesis. Screening by in vitro interaction assays revealed that several of the engineered HSA variants showed decreased binding to hFcRn, which was also the case for two missense variants with mutations within these loops. In addition, four of the variants showed improved binding. Our findings demonstrate that both DI and DIII are required for optimal binding to FcRn, which has implications for our understanding of the FcRn-albumin relationship and how albumin acts as a distributor. Such knowledge may inspire development of novel HSA-based diagnostics and therapeutics.  相似文献   

16.
Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the “know-how” of therapeutic modality by design.  相似文献   

17.
Engineering monoclonal antibodies (mAbs) with improved binding to the neonatal Fc receptor (FcRn) is a strategy that can extend their in vivo half-life and slow their systemic clearance. Published reports have predominantly characterized the pharmacokinetics of mAbs after intravenous administration. Recently, studies in mice suggest FcRn may also play a role in affecting the subcutaneous bioavailability of mAbs. Herein, we examined whether five mAbs engineered with the T250Q/M428L Fc mutations that improved their FcRn interactions, and subsequently their in vivo pharmacokinetics after intravenous administration, had improved subcutaneous bioavailability compared with their wild-type counterparts in cynomolgus monkeys. Similar to the intravenous administration findings, the pharmacokinetic profiles of our variant mAbs after subcutaneous injection showed improved half-life or clearance. In contrast, a clear effect was not observed on the subcutaneous bioavailability. We expect that while FcRn may play a role in determining mAb subcutaneous bioavailability, multiple biopharmaceutical and physiological factors are likely to influence the success of engineering strategies aimed at targeting this pathway for improving bioavailability.  相似文献   

18.
《MABS-AUSTIN》2013,5(2):267-273
Engineering monoclonal antibodies (mAbs) with improved binding to the neonatal Fc receptor (FcRn) is a strategy that can extend their in vivo half-life and slow their systemic clearance. Published reports have predominantly characterized the pharmacokinetics of mAbs after intravenous administration. Recently, studies in mice suggest FcRn may also play a role in affecting the subcutaneous bioavailability of mAbs. Herein, we examined whether five mAbs engineered with the T250Q/M428L Fc mutations that improved their FcRn interactions, and subsequently their in vivo pharmacokinetics after intravenous administration, had improved subcutaneous bioavailability compared with their wild-type counterparts in cynomolgus monkeys. Similar to the intravenous administration findings, the pharmacokinetic profiles of our variant mAbs after subcutaneous injection showed improved half-life or clearance. In contrast, a clear effect was not observed on the subcutaneous bioavailability. We expect that while FcRn may play a role in determining mAb subcutaneous bioavailability, multiple biopharmaceutical and physiological factors are likely to influence the success of engineering strategies aimed at targeting this pathway for improving bioavailability.  相似文献   

19.
Pyrococcus woesei (Pw) is a hyperthermophilic archaeal organism that exists under conditions of high salt and elevated temperature. In a previous study [O'Brien, R., DeDecker, B., Fleming, K., Sigler, P. B., and Ladbury, J. E., (1998) J. Mol. Biol. 279, 117-125], we showed that, despite the similarity of primary and secondary structure, the TATA box binding protein (TBP) from Pw binds thermodynamically in a fundamentally different way to its mesophilic counterparts. The affinity of the interaction increases as the salt concentration is increased. The formation of the protein-DNA complex involves the release of water and the uptake of ions, which were hypothesized to be cations. Here we test this hypothesis by selecting potential cation binding sites at negatively charged, acidic residues in the complex interface. These were substituted using site-directed mutagenesis of specific residues. Changes in the thermodynamic parameters on formation of the mutant protein-DNA complex were determined using isothermal titration calorimetry and compared to the wild type interaction. Removal of a glutamate residue from the binding site resulted in the uptake of one less cation on formation of the complex. This glutamate (E12) is directly involved in the binding of cations in the complex interface. Substitution of another acidic residue proximal to the DNA binding site (D101) had no effect on cation uptake, suggesting that the location of the amino acid on the protein surface is important in dictating the potential to coordinate cations. Removal of the cation binding site provided a more favorable entropy of binding; however, this effect is significantly reduced at higher salt concentrations. The removal of the cation binding site led to an increase in affinity with respect to the wild-type TBP at low salt concentrations.  相似文献   

20.
Vertebrate tRNA export receptor exportin-t (Xpo-t) binds to RanGTP and mature tRNAs cooperatively to form a nuclear export complex. Xpo-t shuttles bidirectionally through nuclear pore complexes (NPCs) but is mainly nuclear at steady state. The steady-state distribution of Xpo-t is shown to depend on its interaction with RanGTP. Two distinct Xpo-t NPC interaction domains that bind differentially to peripherally localized nucleoporins in vitro are identified. The N terminus binds to both Nup153 and RanBP2/Nup358 in a RanGTP-dependent manner, while the C terminus binds to CAN/Nup214 independently of Ran. We propose that these interactions increase the concentration of tRNA export complexes and of empty Xpo-t in the vicinity of NPCs and thus increase the efficiency of the Xpo-t transport cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号