首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hamilton EE  Kay SA 《Cell》2008,135(2):368-368.e1
  相似文献   

3.
The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values.  相似文献   

4.
The prokaryotes known as cyanobacteria possess an endogenous 24h biological (circadian) clock that provides temporal coordination for physiological processes. Although the cyanobacterial clock has the same fundamental properties as circadian clocks in eukaryotes, its components are non-homologous to those of animals, plants or fungi. Moreover, its mechanism is likely to be very different from that depicted in eukaryotic clock models. The picture that is emerging for the timing mechanism in cyanobacteria is of a multiprotein, multimeric, molecular machine composed of proteins whose domains exhibit twists on common themes. Signal transduction into and out of the clock core appears to occur via histidine protein kinase-based phosphorylation relays.  相似文献   

5.
Liu C  Reppert SM 《Neuron》2000,25(1):123-128
The master clock in the suprachiasmatic nuclei (SCN) is composed of multiple, single-cell circadian clocks. We test the postulate that these individual "clock cells" can be synchronized to each other by the inhibitory transmitter gamma-aminobutyric acid (GABA). For these experiments, we monitored the firing rate rhythm of individual clock cells on fixed multielectrode plates in culture and tested the effects of GABA. The results show that the daily variation in responsiveness of the SCN to phase-shifting agents is manifested at the level of individual neurons. Moreover, GABA, acting through A-type receptors, can both phase shift and synchronize clock cells. We propose that GABA is an important synchronizer of SCN neurons in vivo.  相似文献   

6.
7.
Insects display an impressive variety of daily rhythms, which are most evident in their behaviour. Circadian timekeeping systems that generate these daily rhythms of physiology and behaviour all involve three interacting elements: the timekeeper itself (i.e. the clock), inputs to the clock through which it entrains and otherwise responds to environmental cues such as light and temperature, and outputs from the clock through which it imposes daily rhythms on various physiological and behavioural parameters. In insects, as in other animals, cellular clocks are embodied in clock neurons capable of sustained autonomous circadian rhythmicity, and those clock neurons are organized into clock circuits. Drosophila flies spend their entire lives in small areas near the ground, and use their circadian brain clock to regulate daily rhythms of rest and activity, so as to organize their behaviour appropriately to the daily rhythms of their local environment. Migratory locusts and butterflies, on the other hand, spend substantial portions of their lives high up in the air migrating long distances (sometimes thousands of miles) and use their circadian brain clocks to provide time-compensation to their sun-compass navigational systems. Interestingly, however, there appear to be substantial similarities in the cellular and network mechanisms that underlie circadian outputs in all insects.  相似文献   

8.
The mammalian circadian clock   总被引:12,自引:0,他引:12  
Organisms populating the earth are under the steady influence of daily and seasonal changes resulting from the planet's rotation and orbit around the sun. This periodic pattern most prominently manifested by the light-dark cycle has led to the establishment of endogenous circadian timing systems that synchronize biological functions to the environment. The mammalian circadian system is composed of many individual, tissue-specific clocks. To generate coherent physiological and behavioral responses, the phases of this multitude of clocks are orchestrated by the master circadian pacemaker residing in the suprachiasmatic nuclei of the brain. Genetic, biochemical and genomic approaches have led to major advances in understanding the molecular and cellular basis of mammalian circadian clock components and mechanisms.  相似文献   

9.
10.
Winding up the cyanobacterial circadian clock   总被引:1,自引:0,他引:1  
The endogenous circadian clock of the cyanobacterium Synechococcus elongatus controls many cellular processes and confers an adaptive advantage on this organism in a competitive environment. To be advantageous, this internal biological oscillator must be reset daily to remain in synchrony with its environment and to transduce temporal information to control behaviors at appropriate times of day. Recent studies have discovered new components of these input and output pathways of the clock that help to 'wind up' our understanding of the clock system as a whole. Here we review the mechanisms by which S. elongatus maintains internal time, discuss how external stimuli affect this oscillation, and evaluate the mechanisms underlying circadian controlled cellular events.  相似文献   

11.
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.  相似文献   

12.
13.
Whether a clock that generates a circatidal rhythm shares the same elements as the circadian clock is not fully understood. The mangrove cricket, Apteronemobius asahinai, shows simultaneously two endogenous rhythms in its locomotor activity; the circatidal rhythm generates active and inactive phases, and the circadian rhythm modifies activity levels by suppressing the activity during subjective day. In the present study, we silenced Clock (Clk), a master gene of the circadian clock, in A. asahinai using RNAi to investigate the link between the circatidal and circadian clocks. The abundance of Clk mRNA in the crickets injected with double-stranded RNA of Clk (dsClk) was reduced to a half of that in control crickets. dsClk injection also reduced mRNA abundance of another circadian clock gene period (per) and weakened diel oscillation in per mRNA expression. Examination of the locomotor rhythms under constant conditions revealed that the circadian modification was disrupted after silencing Clk expression, but the circatidal rhythm remained unaffected. There were no significant changes in the free-running period of the circatidal rhythm between the controls and the crickets injected with dsClk. Our results reveal that Clk is essential for the circadian clock, but is not required for the circatidal clock. From these results we propose that the circatidal rhythm of A. asahinai is driven by a clock, the molecular components of which are distinct from that of the circadian clock.  相似文献   

14.
Under constant conditions, the circadian bioluminescent glow rhythm in populations (10(5) cells) of Gonyaulax polyedra is accurate to within 2 min/day. On successive days following the transfer to constant conditions, however, the glow exhibits a progressively broader waveform, implying that individual clocks in the population are drifting out of synchrony. Analysis of the glow waveform suggests that the standard deviation in circadian period among individual clocks is about 18 min and that the period of a given clock varies by less than this from one day to the next.  相似文献   

15.
Two major approaches have been used to model circadian clocks. Qualitative modeling, used prior to the recent wealth of detailed molecular knowledge, makes general predictions but cannot provide detailed mechanistic insights. The more recent biophysical approach, on the other hand, incorporates the biochemical events that drive the clock and can make detailed and testable molecular predictions. These predictions are being tested using new experimental techniques that measure reaction kinetics and the behavior of individual cells. A joint modeling and experimental approach has recently been used to understand how mutations affecting phosphorylation can lead to a short circadian period in tau mutant hamsters and in humans with familial advanced sleep phase syndrome (FASPS). Another recent study has revealed novel single-cell phenotypes of clock gene mutations, demanding revision of current biophysical models yet validating certain model predictions that were previously overlooked. A new paradigm for clock research is emerging in which modeling inspires new experimental efforts, experimental data inspire new modeling efforts, and joint modeling/experimental studies lead to a deeper understanding of mammalian circadian rhythms.  相似文献   

16.
17.
All in good time: the Arabidopsis circadian clock   总被引:2,自引:0,他引:2  
Biological time-keeping mechanisms have fascinated researchers since the movement of leaves with a daily rhythm was first described >270 years ago. The circadian clock confers a approximately 24-hour rhythm on a range of processes including leaf movements and the expression of some genes. Molecular mechanisms and components underlying clock function have been described in recent years for several animal and prokaryotic organisms, and those of plants are beginning to be characterized. The emerging model of the Arabidopsis clock has mechanistic parallels with the clocks of other model organisms, which consist of positive and negative feedback loops, but the molecular components appear to be unique to plants.  相似文献   

18.
Ripperger JA  Merrow M 《FEBS letters》2011,585(10):1406-1411
In mammals, higher order chromatin structures are critical for downsizing the genome (packaging) so that the nucleus can be small. The adjustable density of chromatin also regulates gene expression, thus this post-genetic molecular mechanism is one of the routes by which phenotype is shaped. Phenotypes that arise without a concomitant mutation of the underlying genome are termed epigenetic phenomena. Here we discuss epigenetic phenomena from histone and DNA modification as it pertains to the dynamic regulatory processes of the circadian clock. Epigenetic phenomena certainly explain some regulatory aspects of the mammalian circadian oscillator.  相似文献   

19.
Under constant conditions, the circadian bioluminescent glow rhythm in populations (105 cells) ofGonyaulax polyedra is accurate to within 2 min/day. On successive days following the transfer to constant conditions, however, the glow exhibits a progressively broader waveform, implying that individual clocks in the population are drifting out of synchrony. Analysis of the glow waveform suggests that the standard deviation in circadian period among individual clocks is about 18 min and that the period of a given clock varies by less than this from one day to the next.  相似文献   

20.
Biological clock components have been detected in many epithelial tissues of the digestive tract of mammals (oral mucosa, pancreas, and liver), suggesting the existence of peripheral circadian clocks that may be entrainable by food. Our aim was to investigate the expression of main peripheral clock genes in colonocytes of healthy humans and in human colon carcinoma cell lines. The presence of clock components was investigated in single intact colonic crypts isolated by chelation from the biopsies of 25 patients (free of any sign of colonic lesions) undergoing routine colonoscopy and in cell lines of human colon carcinoma (Caco2 and HT29 clone 19A). Per-1, per-2, and clock mRNA were detected by real-time RT-PCR. The three-dimensional distributions of PER-1, PER-2, CLOCK, and BMAL1 proteins were recorded along colonic crypts by immunofluorescent confocal imaging. We demonstrate the presence of per-1, per-2, and clock mRNA in samples prepared from colonic crypts of 5 patients and in all cell lines. We also demonstrate the presence of two circadian clock proteins, PER-1 and CLOCK, in human colonocytes on crypts isolated from 20 patients (15 patients for PER-1 and 6 for CLOCK) and in colon carcinoma cells. Establishing the presence of clock proteins in human colonic crypts is the first step toward the study of the regulation of the intestinal circadian clock by nutrients and feeding rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号