首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Urotensin I (UI) and urotensin II (UII) were demonstrated in the cerebral ganglia of Aplysia californica by applying immunocytochemical and radioimmunoassay procedures. Sequential analysis of adjacent sections of the cerebral ganglia of Aplysia demonstrated that the UI-immunoreactive (UI-IR) neurons of the F cluster of the cerebral ganglia also contained UII immunoreactivity (UII-IR). Both UI-IR and UII-IR were also observed in a cuff-like arrangement of fibers surrounding the proximal portion of the supralabial nerve, as well as in a few fibers in the anterior tentacular nerves. The UI-IR perikarya of the cerebral ganglia appeared to project to the entire CNS of Aplysia, but the UII-IR fibers appeared only in the neuropile and commissure of the cerebral ganglia. The UI-IR staining was abolished by previous immunoabsorption of the UI antiserum with sucker (Catastomus commersoni) UI, but not with ovine corticotropin-releasing factor (CRF), rat/human CRF, or goby (Gillichthys mirabilis) UII. Immunostaining with UII antiserum was quenched by goby UII, but not by sucker UII-A, UII-B, UII-A(6-12), or carp (Cyprinus carpio) UII-alpha and UII-gamma. The UII staining was not abolished by UI or somatostatin. The F cluster was not stained when a somatostatin antiserum was applied. Radioimmunoassay of dilutions of cerebral ganglia extract, using UII antiserum, revealed a parallel displacement curve to synthetic goby UII.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A Maeda  T Kubo  M Mishina  S Numa 《FEBS letters》1988,239(2):339-342
The tissue distribution of the mRNAs encoding muscarinic acetylcholine receptors (mAChRs) I, II, III and IV has been investigated by blot hybridization analysis with specific probes. This study indicates that exocrine glands contain both mAChR I and III mRNAs, whereas smooth muscles contain both mAChR II and III mRNAs. All four mAChR mRNAs are present in cerebrum, whereas only mAChR II mRNA is found in heart.  相似文献   

5.
Bartolomei  F.  Gastaldi  M.  Massacrier  A.  Planells  R.  Nicolas  S.  Cau  P. 《Brain Cell Biology》1997,26(10):667-678
Several lines of evidence underscore a possible role of voltage-gated Na+ channels (NaCH) in epilepsy. We compared the regional distribution of mRNAs coding for Na+ channel α subunit I, II and III in brains from control and kainate-treated rats using non-radioactive in situ hybridization with subtype-specific digoxigenin-labelled cRNA probes. Labelling intensity was evaluated by a densitometric analysis of digitized images. Heterogeneous distribution of the three Na+ channel mRNAs was demonstrated in brain from adult control rats, which confirmed previous studies. Subtype II mRNAs were shown to be abundant in cerebellum and hippocampus. Subtype I mRNAs were also detected in these areas. Subtype III mRNAs were absent in cerebellar cortex, but significantly expressed in neurons of the medulla oblongata and hippocampus. The three subtypes were differentially distributed in neocortical layers. Subtype II mRNAs were present in all of the layers, but mRNAs for subtypes I and III were concentrated in pyramidal cells of neocortex layers IV–V. During kainate-induced seizures, we observed an increase in Na+ channel II and III mRNA levels in hippocampus. In dentate gyrus, subtype III mRNAs increased 3 h after K A administration to a maximum at 6 h. At this latter time, a lower increase in NaCh III mRNAs was also recorded in areas CA1 and CA3. NaCh III overexpression in dentate gyrus persisted for at least 24 h. In the same area, NaCh II mRNAs were also increased with a peak 3 h after K A injection and a return to control levels by 24 h. No changes in NaCh I mR NAs were seen. The K A-induced up-regulation in NaCh mR NAs probably resulted in an increase in hippocampal neuronal excitability.  相似文献   

6.
The intracellular signaling of human urotensin II (hU-II) and its interaction with other vasoconstrictors such as ANG II are poorly understood. In endothelium-denuded rat aorta, coadministration of hU-II (1 nM) and ANG II (2 nM) exerted a significant contractile effect that was associated with increased protein kinase C (PKC) activity and phosphorylation of PKC-alpha/betaII and myosin light chain, whereas either hU-II or ANG II administered alone at these concentrations had no statistically significant effect. This synergistic effect was abrogated by the PKC inhibitor chelerythrine (10 and 30 microM), the selective PKC-alpha/betaII inhibitor G?-6976 (0.1 and 1 microM), the hU-II receptor ligand urantide (30 nM and 1 microM), or the ANG II antagonist losartan (1 microM). Moreover, in endothelium-intact rat aorta, the synergistic effect of hU-II and ANG II was not exerted any longer, and this synergistic effect was unmasked by pretreatment of the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. hU-II (10 nM) alone caused a long-lasting increase in phospho-PKC-theta, phospho-myosin light chain, and PKC activity, which was associated with long-lasting vasoconstriction. These changes were prevented by chelerythrine. Methoxyverapamil-thapsigargin treatment reduced the hU-II-induced vasoconstriction by approximately 50%. The methoxyverapamil-thapsigargin-resistant component of hU-II-induced vasoconstriction was dose-dependently inhibited by chelerythrine. In conclusion, hU-II induces a novel PKC-dependent synergistic action with ANG II in inducing vasoconstriction. PKC-alpha/betaII is probably the PKC isoform involved in this synergistic action. Nitric oxide produced in the endothelium probably masks this synergistic action. The long-lasting vasoconstriction induced by hU-II alone is PKC dependent and associated with PKC-theta phosphorylation.  相似文献   

7.
8.
Ong KL  Wong LY  Man YB  Leung RY  Song YQ  Lam KS  Cheung BM 《Peptides》2006,27(7):1659-1667
We studied single nucleotide polymorphisms (SNPs) and haplotypes in the urotensin-II (UTS2) and urotensin-II receptor gene (UTS2R) in Hong Kong Chinese (224 hypertensive and 306 normotensive unrelated subjects) and their relation to hypertension and the metabolic syndrome. For UTS2, the GGT haplotype (-605G, 143G and 3836T) was associated with higher plasma level of U-II and insulin, and higher homeostasis model assessment of insulin resistance index and beta-cell function. For UTS2R, the AC haplotype (-11640A and -8515C) was associated with higher 2 h plasma glucose after a 75 g oral glucose load. Therefore, U-II and its receptor may play a role in insulin resistance.  相似文献   

9.
尾加压素Ⅱ及其生物学效应   总被引:7,自引:1,他引:6  
尾加压素Ⅱ(urotensinⅡ,UⅡ)最早是从鱼尾部下垂体中分离出的调节肽,近来已从人体中克隆出来,并发现体内一种孤立的G蛋白偶联受体GPR14是其特异性受体,主要分布于心血管与神经系统,UⅡ与GPR14结合后,引起细胞内Ca^2 浓度增高,参与许多生物学效应,如调节内分泌效应,调节渗透压平衡,调节胃肠道平滑肌及心血管收缩功能等,是迄今体内最强的缩血管活性肽。  相似文献   

10.
Urotensin II is among the most potent vasoactive hormones known and the urotensin II (UTS2) gene is localized to 1p36-p32, one of the regions reported to show possible linkage with type 2 diabetes in Japanese. When we surveyed genetic polymorphisms in the UTS2 and urotensin II receptor (GPR14) gene, we identified two SNPs with amino acid substitutions (designated T21M and S89N and an SNP in the promotor region (-605G>A) of the UTS2 gene, and two SNPs in the non-coding region of the GPR14 gene. We then studied these three SNPs in the UTS2 gene and two SNPs in the GPR14 gene in 152 Japanese subjects with type 2 diabetes mellitus and two control Japanese populations. The allele frequency of 89N was significantly higher in type 2 diabetic patients than in both elderly normal subjects (P = 0.0018) and subjects with normal glucose tolerance (P = 0.0011), whereas the allele frequency of T21M and -605G>A in the UTS2 gene and those of two SNPs in the GPR14 gene were essentially identical in these three groups. Furthermore, in the subjects with normal glucose tolerance, 89N was associated with significantly higher insulin levels on oral glucose tolerance test, suggesting reduced insulin sensitivity in subjects with 89N. These results strongly suggest that subjects with S89N in the UTS2 gene are more insulin-resistant and thus more susceptible to type 2 diabetes mellitus development.  相似文献   

11.
12.
Structure-activity relationships of urotensin II and URP   总被引:1,自引:0,他引:1  
Urotensin II (U-II) and urotensin II-related peptide (URP) are the endogenous ligands for the orphan G-protein-coupled receptor GPR14 now renamed UT. At the periphery, U-II and/or URP exert a wide range of biological effects on cardiovascular tissues, airway smooth muscles, kidney and endocrine glands, while central administration of U-II elicits various behavioral and cardiovascular responses. There is also evidence that U-II and/or URP may be involved in a number of pathological conditions including heart failure, atherosclerosis, renal dysfunction and diabetes. Because of the potential involvement of the urotensinergic system in various physiopathological processes, there is need for the rational design of potent and selective ligands for the UT receptor. Structure-activity relationship studies have shown that the minimal sequence required to retain full biological activity is the conserved U-II(4-11) domain, in particular the Cys5 and Cys10 residues involved in the disulfide bridge, and the Phe6, Lys8 and Tyr9 residues. Free alpha-amino group and C-terminal COOH group are not necessary for the biological activity, and modifications of these radicals may even increase the stability of the analogs. Punctual substitution of native amino acids, notably Phe6 and Trp7, by particular residues generates analogs with antagonistic properties. These studies, which provide crucial information regarding the structural and conformational requirements for ligand-receptor interactions, will be of considerable importance for the design of novel UT ligands with increased selectivity, potency and stability, that may eventually lead to the development of innovative drugs.  相似文献   

13.
Ong KL  Wong LY  Cheung BM 《Peptides》2008,29(5):859-867
Urotensin II is a potent vasoconstrictive peptide that mediates both endothelium-independent vasoconstriction and endothelium-dependent vasodilatation. Its plasma level correlates positively with body weight and is raised in diabetes, renal failure, hypertension, and other cardiovascular diseases including congestive heart failure and carotid atherosclerosis. It can inhibit glucose-induced insulin secretion, and genetic variants in urotensin II gene are associated with insulin resistance and type 2 diabetes. Urotensin II also affects lipid metabolism in fish and food intake in mice. Recent studies have also demonstrated a role of urotensin II in inflammation and endothelial dysfunction. These findings suggest a close relationship between urotensin II and at least some components of the metabolic syndrome, including hypertension, insulin resistance, hyperglycemia, and inflammation.  相似文献   

14.
Urotensin II is a cyclic neuropeptide recently shown to play a role via its receptor GPR14 in regulating vascular tone in the mammalian cardiovascular system. The existence of GPR14 in rat heart has been validated by ligand binding assay and RT-PCR. In the present study, we investigated the cellular distribution of GPR14 protein in rat heart by using immunohistochemistry and confocal microscopic immunofluorescence double staining with antipeptide polyclonal antibodies against GPR14 and cell type markers for myocytes and endothelial cells. The direct effect of urotensin II on left ventricular contractility was further evaluated in isolated left ventricular papillary muscles of the rat. In paraffin-embedded heart sections, positive immunohistochemical staining was observed in the left ventricle but not in the right ventricle and atria. Immunofluorescence double staining revealed the cardiac myocyte as the only cell type expressing GPR14 protein in frozen heart sections as well as in isolated cardiac myocytes. There was no visible signal for GPR14 in intramyocardial coronary arteries and capillaries. The existence of GPR14 protein in rat heart was further validated by immunoprecipitation and Western blot analysis. In isolated rat left ventricular papillary muscle preparations, urotensin II induced an increase in active contractile force. GPR14 mRNA was also detected in rat heart by RT-PCR. These data provide the first direct evidence for the cellular localization of GPR14 receptor protein and a positive inotropic effect of urotensin II in normal rat heart.  相似文献   

15.
16.
Summary Crude extracts ofGillichthys urophyses and chromatographically purified urotensin I (UI) and urotensin II (UII) (fromCatostomus urophyses) were injected intravenously intoCoturnix coturnix japonica, Colinus virginianus, Alectoris graeca (Galliformes) andColumba livia (Columbiformes). Changes in arterial blood pressure were monitored. UI elicited dose-dependent vasodepressor responses in all birds. Thioglycollate treatment abolished the depressor action of arginine vasotocin but not that of UI (in all birds). UII was a pressor agent inCoturnix andColinus, both members of the Galliformes. However, the hormone had no pressor activity inColumba, a member of the Columbiformes, and in another member of the Galliformes,Alectoris. The pressor effect of UII was also dose-dependent. Injection of crude urophysial extract intoColinus andCoturnix, therefore, elicited biphasic responses. UII effects can be abolished by prior incubation with carboxypeptidase A. Intravenous injection of the -adrenoceptor blocker, phenoxybenzamine, prior to urotensin injections had no effect on the responses to urotensins. As the chukar,Alectoris graeca, is sensitive to UI and resistant to anesthesia and surgery, and does not readily develop tachyphylaxis to repeated UI injections, its use is recommended as a routine bioassay animal for UI.  相似文献   

17.
The tissue distribution of the multiple forms of rat Na+,K+-ATPase was examined at the molecular level with cDNA probes specific for the alpha, alpha (+), alpha III and beta subunit mRNAs. Northern and slot blot analyses demonstrate that these mRNAs are produced in a tissue-specific manner. RNAs encoding the alpha (+) isoform are detected in kidney, brain, heart, adipose, muscle, stomach and lung, whereas alpha III RNA is detected in brain, stomach and lung. Both alpha and beta mRNAs are present in all the tissues studied, although at very different levels. Examination of heart tissue in greater detail demonstrates that the levels of mRNA encoding the alpha subunit are greater in the atria than in the ventricles, while the converse is true for alpha (+).  相似文献   

18.
The urotensin II receptor (UT) is a member of the G protein-coupled receptor (GPCR) family and binds the cyclic undecapeptide urotensin II (U-II) as well as the octapeptide urotensin II-related peptide (URP). The active UT mediates pleiotropic effects through various signal transduction pathways, including coupling to G proteins and activating the mitogen-activated protein kinase pathway. Several highly conserved residues and motifs of class A GPCRs that are important for activity are found in UT. This review highlights some of the putative roles of these motifs in the binding, activation and desensitization of UT.  相似文献   

19.
20.
Coy DH  Rossowski WJ  Cheng BL  Taylor JE 《Peptides》2002,23(12):2259-2264
Urotensin II is the latest of a growing list of peptides exhibiting potent cardiovascular effects. It is an extremely potent vasoconstrictor in primates; its excretion is elevated in hypertensive patients thus suggesting therapeutic potential for urotensin II analogues, particularly receptor antagonists. In the present study, a number of interesting structural features pertaining to the N-terminus of urotensin II have been evaluated for binding to cloned human and rat urotensin II receptors and functional effects on rat upper thoracic aorta smooth muscle preparations. Shortened octapeptides retained full binding affinities and functional activities, did not require a free N-terminal amino group, and could tolerate an amidated C-terminus. The N-terminal Asp residue present in the octapeptides did not require a negatively charged side chain, merely one which contained a hydrogen bond acceptor CO group which could be present at a variety of positions on the side chain. The side chain could be constrained into a trans-olefinic configuration with full retention of potency, but potency was lost in the cis configuration. N-terminal aromatic amino substituted with polar groups such as OH and NO2 also resulted in high affinity analogues. Overall, the correlation between binding affinities for the human and rat receptors was quite good. These findings could be of value in the development of more potent urotensin II receptor antagonists based on the previously identified somatostatin antagonist octapeptides which we have recently found, function as relatively weak urotensin II antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号