首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.  相似文献   

2.
A series of studies was conducted to evaluate the effects of phorbol esters and a diacylglycerol analog on basal and hormone-stimulated steroidogenesis in granulosa cells from the largest preovulatory follicle of the domestic hen. Agents that previously have been shown to activate protein kinase C, such as the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), and the synthetic diacylglycerol analog, 1-oleoyl-2-acetylglycerol (OAG), suppressed luteinizing hormone (LH)-induced progesterone (PMA at levels of 10 and 100 ng/tube; OAG at levels of 10 and 25 micrograms/tube), and androgen (10 and 100 ng PMA; 25 micrograms OAG) production, but had no effect on basal levels of either steroid. Furthermore, PMA decreased the ability of vasoactive intestinal peptide to induce steroidogenesis, suggesting that protein kinase C activation may generally modulate the activity of hormones that act via the adenylyl cyclase/cyclic 3',5'-adenosine monophosphate (cAMP) second messenger system. In further support of this proposal was the finding that PMA and OAG decreased the production of cAMP in response to LH, and attenuated the steroidogenic response in granulosa cells exposed to 10 mM 8-bromo-cAMP. By contrast, the induction of calcium mobilization using a calcium ionophore (A23187; 0.5-2.0 microM) stimulated progesterone and androgen production without increasing intracellular levels of cAMP, and this stimulatory effect on steroidogenesis was not inhibited by the presence of 100 ng PMA/tube. From these data, we suggest that the activation of protein kinase C in granulosa cells of the hen may provide a physiological mechanism by which receptor-mediated steroidogenesis, involving the adenylyl cyclase second messenger system, is modulated.  相似文献   

3.
Preincubation of neutrophils with certain agonists may "prime" the cells to cause increased responses to a second stimulus ("primed stimulation"). We used two approaches to examine the role of protein kinase C (Ca2+/phospholipid-dependent enzyme) in priming and stimulation by 1-oleoyl-2-acetylglycerol (OAG), phorbol 12-myristate 13-acetate (PMA), and N-formyl-Met-Leu-Phe (fMLP): inhibition of protein kinase C by 1-(5-isoquinolinesulfonyl)-piperazine (C-I) and measurement of protein kinase C translocation induced by priming and stimulatory concentrations of OAG. C-I had little effect on stimulation or primed stimulation by fMLP, suggesting that fMLP invokes events independent of protein kinase C. C-I equally inhibited stimulation and primed stimulation by PMA. Direct stimulation by OAG was inhibited, but priming and primed stimulation by OAG was unaltered by C-I. OAG concentrations greater than or equal to 100 microM caused translocation of protein kinase C, in correlation with direct stimulation of the respiratory burst. Lower OAG concentrations (10-30 microM) primed to stimulation by fMLP and, conversely, stimulated neutrophils primed with fMLP, yet did not cause translocation of protein kinase C. The data are compatible with previous assumptions that PMA and OAG directly stimulate polymorphonuclear neutrophil leukocytes by translocation and activation of protein kinase C. However, priming and primed stimulation by OAG apparently invoke distinct transduction mechanisms other than protein kinase C translocation.  相似文献   

4.
Both 1,2-diacyl- and 1-O-alkyl-2-acyl-sn-glycerols are released during stimulation of human polymorphonuclear leukocytes (PMNL). 1,2-Diacylglycerols have received intense interest as intracellular "second messengers" due to their ability to activate protein kinase C (Ca2+ phospholipid-dependent enzyme). However, little is known about bioactivities of the alkylacylglycerols. This study compared the ability of 1,2-diacyl- and 1-O-alkyl-2-acylglycerols to modulate the respiratory burst of stimulated PMNL, a response which depends on the activation of an NADPH oxidase to generate bactericidal species of reduced oxygen. Direct stimulation by N-formyl-Met-Leu-Phe caused an abrupt release of H2O2 which ceased within 2.5 min. Preincubation with diacylglycerols (1-oleoyl-2-acetylglycerol,5-30 microM, and 1,2-dioctanoylglycerol,2-5 microM) caused a decrease in lag time, 3-fold increase in initial rate of H2O2 release, and marked prolongation of the response to N-formyl-Met-Leu-Phe (features characteristic of a priming effect). Preincubation with alkylacylglycerols (1-O-delta 9-octadecenyl-2-acetylglycerol, 5-30 microM, and 1-O-octyl-2-octanoylglycerol, 20-50 microM) primed initiation (shortened lag time and increased velocity) but, in contrast to diacylglycerols, did not alter duration of H2O2 release. While low concentrations of diacylglycerols (5-30 microM) primed PMNL, higher concentrations (greater than or equal to 70 microM) stimulated the cells directly. In contrast, higher (70-100 microM) concentrations of alkylacylglycerols did not prime the responses but, in fact, inhibited priming (especially of duration) induced by diacylglycerol. The high concentrations of alkylacylglycerol also inhibited direct stimulation induced by high concentrations of diacylglycerol. Direct stimulation by high concentrations of diacylglycerol probably involves activation of protein kinase C, whereas alkylacylglycerol was found to inhibit activation of protein kinase C by diacylglycerol in vitro. Thus, diacylglycerols are complete priming agonists, altering both rate and duration of the response. In contrast, alkylacylglycerols may have biphasic, concentration-related effects in modulation of functions of PMNL. At low concentrations, they may facilitate initiation of functional events; however, as their concentration increases, they may serve to terminate responses. The distinct priming effects of these diglycerides also reveal that priming can involve at least two distinct events: 1) initiation and 2) prolongation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The role of protein kinase C (PKC) in stimulus recognition and insulin secretion was investigated after long-term (24 h) treatment of RINm5F cells with phorbol 12-myristate 13-acetate (PMA). Three methods revealed that PKC was no longer detectable, and PMA-induced insulin secretion was abolished. Such PKC-deficient cells displayed enhanced insulin secretion (2-6-fold) in response to vasopressin and carbachol (activating phospholipase C) as well as to D-glyceraldehyde and alanine (promoting membrane depolarization and voltage-gated Ca2+ influx). Insulin release stimulated by 1-oleoyl-2-acetylglycerol (OAG) was also greater in PKC-deficient cells. OAG caused membrane depolarization and raised the cytosolic Ca2+ concentration ([Ca2+]i), both of which were unaffected by PKC down-regulation. Except for that caused by vasopressin, the secretagogue-induced [Ca2+]i elevations were similar in control and PKC-depleted cells. The [Ca2+]i rise evoked by vasopressin was enhanced during the early phase (observed both in cell suspensions and at the single cell level) and the stimulation of diacylglycerol production was also augmented. These findings suggest more efficient activation of phospholipase C by vasopressin after PKC depletion. Electrically permeabilized cells were used to test whether the release process is facilitated after long-term PMA treatment. PKC deficiency was associated with only slightly increased responsiveness to half-maximally (2 microM) but not to maximally stimulatory Ca2+ concentrations. At 2 microM-Ca2+ vasopressin caused secretion, which was also augmented by PMA pretreatment. The difference between intact and permeabilized cells could indicate the loss in the latter of soluble factors which mediate the enhanced secretory responses. However, changes in cyclic AMP production could not explain the difference. These results demonstrate that PKC not only exerts inhibitory influences on the coupling of receptors to phospholipase C but also interferes with more distal steps implicated in insulin secretion.  相似文献   

6.
There is considerable evidence that an increased turnover of phosphoinositides and phosphatidic acid accompanies stimulus-induced insulin release. As glucose metabolism via glycolysis produces precursors for phospholipid synthesis, the time course of incorporation of [U14C] labelled glucose was measured to determine the pathways of triose carbon incorporation into phospholipids in the islet. Cultured islets were stimulated with glucose 2.7 or 33 mM. The labelled phospholipids present after stimulation were acyldihydroxyacetone phosphate, lysophosphatidic acid, phosphatidic acid and phosphatidylinositol. Acyl-dihydroxyacetone phosphate rose promptly within 1 minute of raising the glucose concentration and was the primary acylated triose labelled during the first 15 minutes. It was possible to show in vitro conversion of [U14C] glucose-derived acyl-dihydroxyacetone phosphate to lysophosphatidic acid and phosphatidic acid in the presence of NADPH (100 microM), indicating the presence in the islet of acyl-dihydroxyacetone phosphate: NADP oxidoreductase and acyl CoA:1 acylglycerol-3-phosphate acyl transferase, respectively. This study suggests that de novo synthesis of phosphatidic acid provides a link between glucose metabolism and the release of insulin.  相似文献   

7.
The involvement of cyclic AMP-dependent protein kinase A (PKA) in the exocytotic release of insulin from rat pancreatic islets was investigated using the Rp isomer of adenosine 3',5'-cyclic phosphorothioate (Rp-cAMPS). Preincubation of electrically permeabilised islets with Rp-cAMPS (1 mM, 1 h, 4 degrees C) inhibited cAMP-induced phosphorylation of islet proteins of apparent molecular weights in the range 20-90 kDa, but did not affect basal (50 nM Ca2+) nor Ca2(+)-stimulated (10 microM) protein phosphorylation. Similarly, Rp-cAMPS (500 microM) inhibited both cAMP- (100 microM) and 8BrcAMP-induced (100 microM) insulin secretion from electrically permeabilised islets without affecting Ca2(+)-stimulated (10 microM) insulin release. In intact islets, Rp-cAMPS (500 microM) inhibited forskolin (1 microM, 10 microM) potentiation of insulin secretion, but did not significantly impair the insulin secretory response to a range of glucose concentrations (2-20 mM). These results suggest that cAMP-induced activation of PKA is not essential for either basal or glucose-stimulated insulin secretion from rat islets.  相似文献   

8.
Immunological analysis using monoclonal antibodies against subspecies of protein kinase C revealed the predominant expression of the isozyme, type II, in human megakaryoblastic leukemic cells. We investigated the effects of phorbol diester 12-O-tetradecanoyl phorbol-13-acetate (TPA), the Ca2+ ionophore ionomycin and synthetic diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) on the immunocytochemical localization of protein kinase C in these cells. Indirect immunofluorescence techniques revealed the enzyme to be located in a diffuse cytosolic pattern, in the intact cells. When the cells were exposed to 100 nM TPA, the immunofluorescent staining was translocated from the cytoplasm to the plasma membrane. The translocation was protracted and staining on the membrane decreased in parallel with the Ca2+, phospholipid-dependent protein kinase activity. Treatment of the cells with 500 nM ionomycin caused an apparent translocation comparable with that seen with TPA, however, this translocation was transient and most of the cytosolic staining was within 60 min. We also found that 30 micrograms/ml OAG did not have significant effects on distribution of the staining, but rather acted synergistically on the translocation with the suboptimal concentration of 100 nM ionomycin. A similar synergism was also observed with 10 nM TPA and 100 nM ionomycin. These results obtained in situ provide evidence that intracellular Ca2+ and diacylglycerol regulate membrane binding of the enzyme in vivo.  相似文献   

9.
When cultured pituitary cells were stimulated with synthetic diacylglycerol such as 1-oleoyl-2-acetylglycerol (OAG), or with a potent tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA), which are known stimulators of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), enhanced release of luteinizing hormone (LH) was observed. Similarly, LH release was also stimulated by the Ca2+-ionophore, A23187. Simultaneous presence of A23187 and OAG or TPA resulted in a synergistic response that mimicked the full physiological response to gonadotropin releasing hormone (GnRH). Removal of extracellular Ca2+ only slightly affected the stimulatory action of TPA and OAG on LH release, but completely blocked the effect of GnRH. The results suggest that the stimulatory effect of GnRH on LH release may be mediated by two intracellular pathways involving Ca2+ and diacylglycerol as second messengers.  相似文献   

10.
In dimethylsulfoxide-differentiated HL60 granulocytes, the chemotactic peptide N-formyl-Met-Leu-Phe (FMLP) augments arachidonic acid (AA) release via phospholipase A2 activity induced by the Ca2+-ionophore, A23187. Evidence indicates that this augmentation is mediated by diacylglycerols formed endogenously during FMLP receptor activation: The augmentation is mimicked by the synthetic diglyceride 1-oleoyl-2-acetyl-glycerol (OAG) and the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate; Pertussis toxin inhibits FMLP-induced augmentation but not OAG-induced augmentation: At suboptimal concentrations FMLP and OAG act cooperatively to augment ionophore A23187-induced AA release but not at optimal concentrations. These data indicate that phospholipase A2 activation in FMLP-stimulated HL60 granulocytes involves cooperative interactions between diacylglycerol formed endogenously and Ca2+. Interestingly, this effect of diacylglycerol appears not to be mediated by protein kinase C, since a specific protein kinase C inhibitor, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) does not inhibit receptor-mediated release of AA by stimulated HL60 granulocytes.  相似文献   

11.
The secretagogue effect of prolactin (PRL) on casein release by epithelial mammary cells has been previously related to stimulation of the phospholipase A2-arachidonic acid cascade. In order to determine whether other intracellular pathways are implicated in this secretagogue effect, different agents acting on protein kinase C (PKC) and phospholipase C (PLC) activity have been assessed in vitro in lactating rabbit mammary gland fragments. Phorbol ester (20 nm TPA and 1-oleoyl-2-acetyl-sn-glycerol (10 microM (OAG) stimulated newly synthesized casein secretion and potentiated the PRL secretatogue effect. However, 100 microM quercetin, 100 microM H-7 and 5 and 20 nM staurosporine did not inhibit the latter effect. Exogenous PLC did not stimulate casein secretion. PRL did not affect production of inositol phosphates (IPs) during 10 or 60 min exposure. These results show that PKC activation may increase basal levels of casein secretion, and demonstrate that PRL does not act primarily via PKC activation or by PLC activation to stimulate casein secretion.  相似文献   

12.
When Swiss 3T3 fibroblasts were incubated with bradykinin, prostaglandin E2 (PGE2) synthesis was stimulated. Phorbol esters or the diacylglycerol analog 1-oleoyl-2-acetylglycerol (OAG), by themselves, did not acutely stimulate PGE2 synthesis. However, when cells were preincubated with phorbol esters or OAG, bradykinin-stimulated PGE2 synthesis was potentiated markedly. When phorbol esters and OAG were added together, bradykinin-stimulated PGE2 synthesis was potentiated in an additive manner. When cells were preincubated for 48 h with phorbol esters, then bradykinin added, amplification of bradykinin-stimulated PGE2 synthesis by phorbol ester or OAG was still apparent, even though prolonged pretreatment with phorbol esters abolished protein kinase C (Ca2+/phospholipid-dependent enzyme) activity in cell-free preparations. Further, the protein kinase C antagonist, H-7, only slightly inhibited phorbol ester or OAG amplification of bradykinin-stimulated PGE2 synthesis. The possibility is raised that diacylglycerol, formed in response to many receptors, may serve as a transducer of receptor-receptor interactions. Since desensitization or inhibition of protein kinase C only partially reduced the amplification of bradykinin-stimulated PGE2 synthesis by phorbol esters or OAG, the possibility is raised that diacylglycerol mimetics may have actions in addition to activation of protein kinase C.  相似文献   

13.
The hamster islet B cell line HIT retains the ability to secret insulin in response to glucose and several receptor agonists. We used HIT cells to study the initial signaling events in glucose or receptor agonist-stimulated insulin secretion. Glucose stimulated insulin release from HIT cells in a dose-dependent manner with a half-maximal effect seen already at 1 mM. Insulin release was also stimulated by carbachol in a glucose-dependent manner. Glucose depolarized the HIT cell membrane potential as assessed with the fluorescent probe bisoxonol and raised intracellular Ca2+ as revealed by fura-2 measurements. Using a Mn2+ fura-2 quenching technique, we could show that the rise in intracellular Ca2+ was due to Ca2+ influx following opening of voltage-gated Ca2+ channels. Glucose is thought to increase the diacylglycerol (DAG) content of insulin-secreting cells. However, although HIT cells respond to glucose in terms of insulin secretion, membrane depolarization, and Ca2+ rise, the hexose was unable to increase the proportion of protein kinase C activity associated with membranes. In contrast, the membrane-associated protein kinase C activity increased in HIT cells exposed to the two receptor agonists carbachol and bombesin. Bombesin was shown to generate DAG with the expected fatty acid composition of activators of phospholipase C. Glucose, in contrast, only caused minor increases in DAG containing myristic and palmitic acid without affecting total DAG mass. The failure to detect stimulation of protein kinase C by glucose could be due to both the limited amount and to the different fatty acid composition of the metabolically generated DAG. The latter was in part supported by experiments performed on protein kinase C partially purified from HIT cells. Indeed, 1,2-dipalmitoylglycerol, presumed to be the main DAG species generated by glucose, was only one-third as active as 1,2-dioleoylglycerol and 1-stearoyl-2-arachidonylglycerol in stimulating the isolated enzyme at physiological Ca2+ concentration. It is therefore unlikely that DAG and protein kinase C play a major role in glucose-stimulated insulin secretion.  相似文献   

14.
Prolactin (PRL) release in permeable GH3 pituitary cells was stimulated by the protein kinase C activators 12-O-tetradecanoylphorbol 13-acetate (TPA) and 1-oleoyl-2-acetyl-sn-glycerol (OAG). Both agents stimulated secretion at 10 nM Ca2+, but higher [Ca2+] (greater than 0.1 microM) potentiated TPA and OAG action. Maximal potentiation occurred at 1 microM calculated free Ca2+, and a similar value was obtained when the cytoplasmic [Ca2+] was measured with the Ca2+-sensitive dye Quin 2. Release of a secretory sulfated proteoglycan was also stimulated by TPA and OAG in permeable GH3 cells, with characteristics similar to those for PRL release. Trifluoroperazine, polymyxin B, neomycin, and 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate all inhibited both TPA- and Ca2+-stimulated PRL release, but in each case the half-maximal inhibitory concentrations were approximately 2-fold higher for TPA-stimulated release compared to Ca2+-stimulated release. Thyrotropin-releasing hormone (TRH) and guanosine 5'-Q-thiotriphosphate, which stimulate polyphosphoinositide breakdown in permeable cells, were found to be only weak stimulators of PRL release, compared to TPA and exogenous diacylglycerol. However, a much stronger effect of TRH was seen if cells were briefly treated with TRH prior to permeabilization. PRL release from TRH-pretreated permeable cells resembled TPA- and OAG-stimulated secretion, with [Ca2+] greater than 0.1 microM potentiating the effect of TRH pretreatment. These studies support the hypothesis that PRL release in GH3 cells can be stimulated directly by a diacylglycerol-activated secretory mechanism whose activity is modulated by [Ca2+].  相似文献   

15.
The potentiation of glucose-stimulated insulin release induced by 100 nM-12-O-tetradecanoylphorbol 13-acetate (TPA) was inhibited by clomiphene, an inhibitor of protein kinase C (PK C), in a dose-dependent manner. Clomiphene at concentrations up to 50 microM had a modest inhibitory action (27%) on insulin release stimulated by 10 mM-glucose alone, but had no effect on the potentiation of insulin release induced by forskolin. Islet PK C activity, associated with a particulate fraction, was stimulated maximally by 100 nM-TPA. This stimulation was blocked by clomiphene in a dose-dependent manner, with 50% inhibition at 30 microM. Incubation of intact islets with TPA after preincubation with [32P]Pi and 10 mM-glucose to label intracellular ATP resulted primarily in enhanced phosphorylation of a 37 kDa protein (mean value, +/- S.E.M., 36,700 +/- 600 Da; n = 7). This increased phosphorylation was blocked by the simultaneous inclusion of clomiphene. Subcellular fractionation revealed the presence of the 37 kDa phosphoprotein in a 24,000 g particulate fraction of islet homogenates. Neither clomiphene nor TPA affected the rate of glucose oxidation by islets. These results show that the phosphorylation state of a 37 kDa membrane protein parallels the modulation of insulin release induced by TPA and clomiphene and support a role for PK C in the insulin-secretory mechanism.  相似文献   

16.
The accumulation of cyclic AMP in Jurkat cells was stimulated by adenosine and adenosine analogues. The accumulation of cyclic AMP induced by these agents was competitively antagonized by the adenosine receptor antagonist 8-p-sulphophenyl-theophylline (KD appr 1.9 microM). The lectin PHA, the diacylglycerol OAG as well as tumor promoting phorbol esters enhanced the accumulation of cyclic AMP induced by the adenosine analogue NECA. The results suggest that activation of CD2/CD3 receptors by lectins could potentiate the endogenous cyclic AMP stimulator adenosine via activation of protein kinase C.  相似文献   

17.
Interleukin 2 (IL-2) and the synthetic diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), a direct activator of protein kinase C, induce phosphorylation of the ribosomal S6 protein in a murine IL-2-dependent lymphocyte clone. The phosphorylation of S6 protein was correlated with increased protein synthesis in this cell line. Using cell-free assay systems, two unique kinases capable of phosphorylating the S6 protein were identified, namely, a calcium/phospholipid-dependent phosphotransferase, protein kinase C, and a second phospholipid-independent kinase detected in crude cytosolic fractions. Peptide mapping of the S6 protein demonstrated that the degree of S6 phosphorylation stimulated by IL-2 and OAG was similar to that achieved using the second (calcium/phospholipid-independent) kinase but not to the level of phosphorylation achieved with protein kinase C. The kinase responsible for phosphorylating S6 was soluble in stimulated cells and was induced in a time-dependent manner by either IL-2 or diacylglycerol treatment of intact cells. These data support the notion that, although protein kinase C is activated by IL-2 or OAG, subsequent events such as S6 phosphorylation may be the result of the activation of secondary phosphotransferase systems regulated by protein kinase C.  相似文献   

18.
Fluorescein rapidly accumulates in rat pancreatic islets exposed to fluorescein diacetate. The influence of environmental agents upon cellular pH was examined in fluorescein-labelled islets by recording their fluorescence intensity at 520 nm after excitation at 490 and 435 nm, respectively. Glucose caused a rapid, sustained and dose-related increase in cellular pH. Another nutrient secretagogue, 2-ketoisocaproic acid, also increased cellular pH. The stimulation of islet cells by non-nutrient secretagogues, e.g. by glibenclamide or in response to an increase in extracellular K+ concentration, decreased cellular pH, indicating that the nutrient-induced increase in cellular pH is not merely a consequence of stimulated Ca2+ inflow and/or insulin release. In either the presence of amiloride or absence of bicarbonate, glucose decreased cellular pH. These results strongly suggest that the acidification of islet cells which can be expected from the increased metabolism of glucose in glucose-stimulated islets is normally masked and overcome by stimulation of such processes as Na+/H+ and HCO3-/Cl- exchange.  相似文献   

19.
It has been found that 1,2- but not 1,3-diacylglycerols stimulated phosphorylation of the insulin receptor of cultured human monocyte-like (U-937) and lymphoblastoid (IM-9) cells both in the intact- and broken-cell systems. The stimulation of the receptor's beta-subunit phosphorylation was dose-dependent, with optimal effect at 100 micrograms/ml of diacylglycerol. The effects of insulin and 1,2-diacylglycerols on the phosphorylation of partially purified insulin receptors were additive. Phosphoamino acid analysis showed a major effect of diacylglycerols on phosphorylation of tyrosine residues. The diacylglycerols also stimulated tyrosine kinase activity of the partially purified U-937 and IM-9 insulin receptors 2.5-3.5-fold when measured by phosphorylation of an exogenous substrate, poly(Glu80Tyr20) in the absence of any added insulin, calcium or phospholipid. Since this diacylglycerol effect could not be reproduced under conditions optimal for protein kinase C activation and the purified protein kinase C did not stimulate phosphorylation of the beta-subunit of the insulin receptor in this system, it is unlikely that the diacylglycerol effect was mediated by protein kinase C. Since these exogenous 1,2-diacylglycerols at the same high concentration also inhibited 125I-insulin binding to the insulin receptor of the intact U-937 and IM-9 cells, diacylglycerols could modulate the function of the insulin receptor and insulin action in human mononuclear cells.  相似文献   

20.
When neutrophils were stimulated by the chemotactic peptide, fMLP, a rapid, transient increase in the activity of diacylglycerol(DG) kinase in the membrane fraction was detected. DG kinase in cytosol, on the contrary, showed a transient decrease. The total activity in homogenates was not affected. Tetradecanoylphorbol acetate(TPA) and 1-oleoyl-2-acetylglycerol(OAG) also caused an increase in DG kinase activity in the membrane fraction. Km value of DG kinase in membranes was not changed by the treatment of fMLP or TPA, though Vmax was increased. Considering these results, DG kinase may translocate from cytosol to membranes on stimulation by fMLP, TPA or OAG in neutrophils. The translocation may play important roles in regulation of protein kinase C activity, since DG kinase competes with protein kinase C for DG, which is formed by receptor-activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号