首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms by which acute administration of methapyrilene, an H(1)-receptor antihistamine causes periportal necrosis to rats are unknown. This study investigated the role of the hepato-biliary system in methapyrilene hepatotoxicity following daily administration of 150 mg/kg per day over 3 consecutive days. Biliary metabolites of methapyrilene were tentatively identified. In male Han Wistar rats administration of methapyrilene significantly increased hepatic reduced glutathione (GSH) to 140% of control levels 24 h following the last dose. There were no significant changes in the activities of glutathione-related enzymes, glutathione peroxidase (GPx) and reductase (GSH), glutathione S-transferase (GST), and gamma-glutamyl cysteine synthetase (gamma-GCS) over 3 days of methapyrilene administration. Methapyrilene treatment resulted in no significant increase in excretion of biliary oxidized glutathione (GSSG), a sensitive marker of oxidative stress in vivo, following the third dose. [3H]Methapyrilene-derived radioactivity was detected in bile, to a greater extent than in feces, indicating that methapyrilene and/or metabolites underwent enterohepatic recirculation. Cannulation and exteriorization of the bile duct (to interrupt enterohepatic recirculation) afforded some protection against the hepatotoxicity, assessed by clinical chemistry and histopathology. Liquid chromatography-mass spectrometry (LC-MS) analysis of bile indicated the presence of unmetabolized methapyrilene, methapyrilene O-glucuronide and desmethyl methapyrilene O-glucuronide. These data demonstrate that acute methapyrilene hepatotoxicity in vivo is not a consequence of GSH depletion, or oxidative stress, but that enterohepatic recirculation of biliary metabolites may be important. Progressive exposure to non-oxidizing, reactive metabolic intermediates may be responsible for hepatotoxicity.  相似文献   

2.
p-Aminophenol (PAP) is a widely used industrial chemical and a known nephrotoxin. Recently, it was found to also cause hepatotoxicity and glutathione (GSH) depletion in mice. The exact mechanism of liver toxicity is not known. The aims of this study were to determine whether PAP can cause acute hepatotoxicity in hamsters and to further investigate the role of GSH in PAP-induced toxicity. PAP was administered ip to hamsters in doses of 200-800 mg/kg. Liver damage at 24 h after PAP administration was assessed by elevations in plasma enzyme activities and histopathologic examination. GSH and cysteine (Cys) levels in liver at 4 h were determined by HPLC. PAP decreased hepatic GSH concentration to 8% and Cys to 30% of vehicle control values. It increased plasma glutamic pyruvic transaminase (GPT) activity by 47-fold and sorbitol dehydrogenase (SDH) activity by 113-fold. PAP also caused severe centrilobular hepatocellular necrosis. 2(RS)-n-Propylthiazolidine-4(R)-carboxylic acid (PTCA), a Cys precursor, attenuated the PAP-induced decreases in hepatic sulfhydryl levels; GSH and Cys were 39% and 78% of vehicle controls, respectively. PTCA also attenuated the PAP-induced elevations in plasma enzyme activities and hepatic necrosis. It was concluded that PAP hepatotoxicity is associated with depletion of hepatic GSH and can be prevented by PTCA.  相似文献   

3.
An assay of gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in crude extracts of cultured cells and tissues is described. It represents a novel combination of known methods, and is based on the formation of glutathione (GSH) from cysteine, glutamate and glycine in the presence of rat kidney GS for the assay of gamma-GCS, or from gamma-glutamylcysteine and glycine for the assay of GS. GSH is then quantified by the Tietze recycling method. Assay mixtures contain the gamma-glutamyl transpeptidase (GGT) inhibitor acivicin in order to prevent the degradation of gamma-glutamylcysteine and of the accumulating GSH, and dithiothreitol in order to prevent the oxidation of cysteine and gamma-glutamylcysteine. gamma-GCS and GS levels determined by this method are comparable to those determined by others. The method is suitable for the rapid determination of gamma-GCS GS in GGT-containing tissues and for the studies of induction of gamma-GCS and GS in tissue cultures.  相似文献   

4.
Oxidized LDL (oxLDL) produced a rapid depletion of intracellular glutathione (GSH) followed by an adaptive increase in J774 A.1 macrophages. OxLDL also induced a transient increase in the levels of gamma-glutamylcysteine synthetase heavy subunit (gamma-GCS-HS), representing the catalytic subunit of the rate-limiting enzyme for de novo GSH synthesis. The induction took place within 3 h, with maximum levels observed by 10 h of treatment. Pretreatment of oxLDL with ebselen inhibited GSH depletion and attenuated the gamma-GCS-HS induction. OxLDL-associated lipid hydroperoxides and their decomposition product aldehydes are two major components thought to account for GSH depletion in macrophages. Ebselen pretreatment had only a minor effect on malondialdehyde levels, whereas peroxide content was essentially abolished, suggesting that oxLDL-associated hydroperoxides may mediate both GSH depletion and gamma-GCS-HS induction. Acetylated LDL (AcLDL) also caused a moderate induction of gamma-GCS-HS protein along with a 30% transient increase in GSH by 3;-6 h, suggesting a minor involvement of scavenger receptor-mediated signaling of GSH synthesis. However, the level of gamma-GCS induction by AcLDL was insufficient to cause a sustained increase in GSH. Macrophages with higher glutathione peroxidase (GPx) activity experienced a more rapid and extensive depletion of GSH when treated with oxLDL under similar conditions, along with greater resistance to oxLDL- or peroxide-induced cytotoxicity. We conclude that oxLDL-associated peroxides are primarily responsible for GSH depletion, creating an oxidizing environment required for gamma-GCS induction and compensatory GSH synthesis. This is facilitated in cells expressing high GPx activity through a rapid depletion of GSH in the face of a peroxide challenge.  相似文献   

5.
The chemoprotective effect of hydroxytyrosol (HT), a strong antioxidant compound from extra virgin olive oil, against acrylamide (AA)-induced genotoxicity was investigated in a human hepatoma cell line, HepG2. The micronucleus test (MNT) assay was used to monitor genotoxicity. In MNT, we found that HT at all tested concentrations (12.5-50 microM) significantly reduced the micronuclei frequencies in a concentration-dependent manner caused by AA. In order to clarify the underlying mechanisms we measured the intracellular reactive oxygen species (ROS) formation using 2,7-dichlorofluorescein diacetate (DCFH-DA) as a fluorescent probe. Intracellular glutathione (GSH) level was estimated by fluorometric methods. The rate-limiting enzyme in GSH synthesis is gamma-glutamylcysteine synthetase (gamma-GCS) and gamma-GCS was measured using Western blotting. The results showed that HT significantly concentration-dependent reduced the genotoxicity caused by AA. Furthermore, HT was able to reduce intracellular ROS formation and attenuate GSH depletion caused by AA in a concentration-dependent manner. It was also found that HT enhanced the expression of gamma-GCS in HepG2 cells treated with 10 mM AA using immunoblotting in a concentration-dependent manner. The results showed that HT reduced the AA-induced genotoxicity by decreasing the ROS level and increasing the GSH level. The data strongly suggest that HT have significant protective ability against AA-induced genotoxicity in vitro.  相似文献   

6.
7.
The mechanisms underlying iodobenzene hepatotoxicity were investigated in Albino mice in which the hepatic glutathione (GSH) content had been decreased by nearly 50% by starvation for 16 h before poisoning. After iodobenzene administration (9 mmol/Kg, p.o.) the hepatic GSH content decreased progressively and liver necrosis, as measured by the plasma transaminase (GPT, GOT) levels, occurred in many animals at 12 and 16 h. A clear cut necrosis was evident only when the hepatic GSH depletion reached a threshold value (3.5-2.5 nmol/mg protein). The same threshold value was evident for the occurrence of lipid peroxidation (measured as both carbonyl functions and conjugated dienes in liver phospholipids). The highly significant correlation found between lipid peroxidation and liver necrosis supports the possibility of a cause-effect relationship between the two phenomena.  相似文献   

8.
Low levels of intracellular antioxidant enzyme activities as well as glutathione (GSH) concentrations have been described in pancreatic beta cells. We examined the effects of intracellular GSH depletion on insulin secretion and the role of intracellular GSH in signal transduction in beta cell line, MIN6 cells. Anti-gamma-glutamylcysteine synthetase (gamma-GCS) heavy subunit ribozyme was stably transfected to MIN6 cells to reduce intracellular GSH concentration. In the presence of 10 mM glucose, ribozyme-transfected cells (RTC) increased insulin secretion from 0.58 microg/10(6) cells/h in control cells (CC) to 1.48 microg/10(6) cells/h. This was associated with increased intracellular Ca(2+) concentration in RTC, detected by fluo-3 staining. Our results demonstrated that intracellular GSH concentration might influence insulin secretion by MIN6 cells, and suggest that enhanced insulin secretion by beta cells conditioned by chronic depletion of GSH is mediated by increased intracellular Ca(2+) concentration.  相似文献   

9.
10.
The protective effects of glutathione monoester (GME) on buthionine sulfoximine (BSO)-induced glutathione (GSH) depletion and its sequel were evaluated in rat erythrocyte/erythrocyte membrane. Animals were divided into three groups (n=6 in each): control, BSO and BSO+GME group. Administration of BSO, at a concentration of 4 mmol/kg bw, to the albino rats resulted in depletion of blood GSH level to about 59%. GSH was elevated several folds in the GME group as compared to the control (P<0.05) and BSO (P<0.001) groups. Decreased concentration of vitamin E was found in the erythrocyte membrane isolated from BSO-administered animals. Antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were also found to be altered due to BSO-induced GSH depletion in blood erythrocytes. The SOD and CAT activities in BSO group were significantly lower (P<0.001) than the other groups. Lipid peroxidation index and malondialdehyde (MDA) levels in erythrocytes and their membranes were increased to about 45% and 40%, respectively. The activities of Ca2+ ATPase, Mg2+ ATPase and Na+K+ ATPase were lower than those of control group (P<0.05), whereas the activities of these enzymes were found to be restored to normal followed by GME therapy (P<0.05). Cholesterol, phospholipid and C/P ratio and some of the phospholipid classes like phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin were significantly (P<0.05) altered in the erythrocyte membranes of BSO-administered rats compared with those of control group. These parameters were restored to control group levels in GME-treated group. Oxidative stress may play a major role in the BSO-mediated gamma glutamyl cysteine synthetase (gamma-GCS) inhibition and hence the depletion of GSH. In conclusion, our findings have shown that antioxidant status decreased and lipid peroxidation increased in BSO-treated rats. GME potentiates the RBC and blood antioxidant defense mechanisms and decreases lipid peroxidation.  相似文献   

11.
To search for compounds that reverse the drug resistance induced by glutathione (GSH), an original screening system to detect intracellular GSH depleters was established. Among 8843 microbes derived from the soil samples tested, the extracts of two Streptomyces species named KS6701 and KS8846, lowered the intracellular GSH level of Saccharomyces cerevisiae 5 x 47. From both the microbes, 5-hydroxy-4-oxo-L-norvaline (HON) was isolated as the active compound. At a concentration of 50-100 micrograms/ml, HON also decreased the GSH/protein level of the human ovarian tumor cell line, 2008/C13*5.25 and reversed its resistance to cisplatin. We also investigated the mechanism of the depletion. HON had little effect on gamma-glutamylcysteine synthetase (gamma-GCS) or glutathione synthetase, but HON decreased the quantity of thiol substances when it was spontaneously reacted with them. This suggested that the GSH depletion by HON occurred through a mechanism different from that of buthionine sulfoximine, a selective gamma-GCS inhibitor.  相似文献   

12.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

13.
The omega-3 fatty acid eicosapentaenoic acid (EPA) is a superb nature's medicine, with still unfolding health benefits. Because hepatotoxicity is a prominent adverse drug reaction, we currently attempted a new approach in which EPA was challenged to both alleviate hepatotoxicity and provide synergy with anticonvulsant effects of valproate (VPA). Besides, we verified whether EPA may kinetically modulate the clearance rate of VPA. VPA (500mg/kg p.o., for 2weeks) caused rat hepatotoxicity that was manifested as notable (2- to 4-fold) rise in serum liver enzymes (GGT, ALT, and ALP), increased hepatic levels of lipid peroxides and TNF-α (3- and 7-fold) and activity of myeloperoxidase (MPO, 4-fold), lowering of serum albumin (42%), and depletion of liver reduced glutathione (GSH, 36%). Furthermore, histopathologic examination revealed hepatocellular degeneration, focal pericentral necrosis, infiltration of inflammatory cells, and steatosis. Joint treatment with EPA (300mg/kg) blunted the oxidative stress, TNF-α levels and MPO activity, while enhanced levels of serum albumin and hepatic GSH. EPA also ameliorated most of the hepatocellular anomalies evoked by VPA. Additionally, in a mouse PTZ convulsion model, EPA markedly augmented the anticonvulsant effects of VPA far beyond their single responses. On the other hand, pharmacokinetic analyses revealed that joint EPA administration had no effect on serum VPA concentrations. Collectively, results demonstrate for the first time that the ω-3 FA (EPA) markedly alleviated VPA-induced hepatotoxicity, oxidative stress, and inflammation, while enhanced its anticonvulsant effects without altering its clearance. Therapeutically, these protective and synergy profiles for EPA foster a more safe and efficacious drug combination regimen than VPA.  相似文献   

14.
Reduced glutathione (GSH) serves as a primary redox buffer and its depletion causes growth inhibition or apoptosis in many organisms. In Dictyostelium discoideum, the null mutant (gcsA(-)) of gcsA encoding gamma-glutamylcysteine synthetase shows growth arrest and developmental defect when GSH is depleted. To investigate the mechanism by which GSH depletion induces growth arrest, a proteomic analysis was performed and aldose reductase (AlrA) was identified as the most prominently induced protein in gcsA(-) cells. Induction of AlrA was dependent on GSH concentration and was repressed by GSH but not effectively by either the reducing agent such as dithiothreitol or overexpression of superoxide dismutase. Methylglyoxal (MG), a toxic alpha-ketoaldehyde, strongly induced alrA expression and AlrA catalysed MG reduction efficiently. The alrA knockdown gcsA(-) cells (gcsA(-)/alrA(as)) exhibited more decreased growth rate than gcsA(-) cells, whereas the gcsA(-) cells overexpressing alrA (gcsA(-)/alrA(oe)) showed the recovery of growth rate. Interestingly, intracellular MG levels were significantly augmented in gcsA(-)/alrA(as) cells compared with gcsA(-) cells following GSH depletion. By contrast, gcsA(-)/alrA(oe) cells showed repression of MG induction. Furthermore, MG treatment inhibited growth of wild-type KAx3 cells, inducing G1 phase arrest. Thus, our findings suggest that MG accumulated by GSH depletion inhibits cell growth in Dictyostelium.  相似文献   

15.
The effects of administration of dec-2-ynol and dec-2-ynoic acid on the hepatic glutathione (GSH) content and hepatic microsomal trans-2-enoyl-CoA reductase activity were examined in rat. Both compounds, when administered ip, caused a marked depletion of GSH levels and a corresponding inactivation of trans-2-enoyl-CoA reductase activity in both a time- and dose-dependent manner. The dec-2-ynoic acid caused greater hepatotoxicity than dec-2-ynol based on serum alanine transaminase activity. Based on the observations that (a) the alcohol did not interact with GSH in the presence or absence of cytosol, (b) the spectral manifestation of the interaction between GSH and the alcohol occurred only when NAD+ was added to the reaction mixture containing the cytosol and reactants, and (c) a similar absorbance spectrum was obtained following the interaction between aldehyde and GSH, it was concluded that dec-2-ynol is converted to an electrophile, dec-2-ynal, which causes depletion of GSH. The decrease in GSH content following administration of the acid appears to be due to activation of the acid to the electrophile, dec-2-ynoyl CoA, which then interacts with GSH, resulting in its depletion, based on the in vitro observations that (a) the acid did not interact with GSH in the presence or absence of cytosol, and (b) the spectral manifestation of interaction between GSH and dec-2-ynoyl CoA occurred both nonenzymatically and enzymatically in the presence of rat liver glutathione S-transferase (Sigma). Bovine serum albumin stimulated the enzymatic reaction. Comparable to the effects on GSH were the effects of dec-2-ynol, dec-2-ynal, dec-2-ynoic acid, and dec-2-ynoyl CoA on the microsomal trans-2-enoyl-CoA reductase activity in vitro. While the alcohol had no effect on the enzyme activity, its electrophilic product, the aldehyde, was a potent inhibitor. Similarly, the acid did not inhibit the enzyme activity unless the acid was present at high concentration; however, its electrophilic product, the CoA thioester, was a very potent inhibitor at very low concentration.  相似文献   

16.
Summary

Glutathione (GSH) plays several important roles in the protection of cells against oxidative damage, particularly following exposure to xenobiotics. Ferric nitrilotriacetate (Fe-NTA) is a potent depletor of GSH and also enhances tissue lipid peroxidation. In this study, we show the effect of Fe-NTA treatment on hepatic GSH and some of the glutathione metabolizing enzymes, oxidant generation and liver damage. The level of hepatic GSH and the activities of glutathione reductase, glutathione S-transferase, glutathione peroxidase, and glucose 6-phosphate dehydrogenase all decrease following Fe-NTA administration. In these parameters the maximum decrease occurred at 12 h following Fe-NTA treatment. In contrast, γ-glutamyl transpeptidase was increased at this time. Not surprisingly, the increase in the activity of γ-glutamyl transpeptidase and decreases in GSH, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione S-transferase were found to be dependent on the dose of Fe-NTA administered. Fe-NTA administration also enhances the production of H2O2 and increases hepatic lipid peroxidation. Parallel to these changes, Fe-NTA enhances liver damage as evidenced by increases in serum transaminases. Once again, the liver damage is dependent on the dose of Fe-NTA and is maximal at 12 h. Pretreatment of animals with antioxidant, butylated hydroxy anisole (BHA), protects against Fe-NTA-mediated hepatotoxicity further supporting the involvement of oxidative stress in Fe-NTA-mediated hepatic damage. In aggregate, our results indicate that Fe-NTA administration eventuates in decreased hepatic GSH, a fall in the activities of glutathione metabolizing enzymes and excessive production of oxidants, all of which are involved in the cascade of events leading to iron-mediated hepatic injury.  相似文献   

17.
18.
In the present study, we show that melatonin induces the expression of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme of glutathione (GSH) synthesis, in ECV304 human vascular endothelial cells. One micromolar melatonin induced the expression of gamma-GCS mRNA followed by an increase in the concentration of GSH with a peak at 24 h. An electrophoretic mobility shift assay showed that melatonin stimulates the DNA-binding activity of activator protein-1 (AP-1) as well as retinoid Z receptor/retinoid receptor-related orphan receptor alpha (RZR/RORalpha). ECV304 cells transiently transfected with a plasmid containing the gamma-GCS promoter-luciferase construct showed increased luciferase activity when treated with melatonin. The melatonin-dependent luciferase activity was found in the gamma-GCS promoter containing AP-1 site. The luciferase activity mediated by AP-1 was repressed in the promoter containing RZR/RORalpha site. In addition, cell cycle analysis showed that melatonin increases the number of cells in the G0/G1 phase; however, treatment of the cells with buthionine sulfoximine, a specific inhibitor of gamma-GCS, abolished the effect of melatonin on the cell cycle, suggesting induction of cell arrest by melatonin requires GSH. As conclusion, induction of GSH synthesis by melatonin protects cells against oxidative stress and regulates cell proliferation.  相似文献   

19.
gamma-Glutamylcysteine synthetase (gamma-GCS) is a key enzyme in glutathione (GSH) synthesis, and is thought to play a significant role in intracellular detoxification, especially of anticancer drugs. Increased levels of GSH are commonly found in the drug-resistant human cancer cells. We designed a hammerhead ribozyme against gamma-GCS mRNA (anti-gamma-GCS Rz), which specifically down-regulated gamma-GCS gene expression in the HCT-8 human colon cancer cell line. The aim of this study was to reverse the cisplatin and multidrug resistance for anticancer drugs. The cisplatin-resistant HCT-8 cells (HCT-8DDP cells) overexpressed MRP and MDR1 genes, and showed resistance to not only cisplatin (CDDP), but also doxorubicin (DOX) and etoposide (VP-16). We transfected a vector expressing anti-gamma-GCS Rz into the HCT-8DDP cells (HCT-8DDP/Rz). The anti-gamma-GCS Rz significantly suppressed MRP and MDR, and altered anticancer drug resistance. The HCT-8DDP/Rz cells were more sensitive to CDDP, DOX and VP-16 by 1.8-, 4.9-, and 1.5-fold, respectively, compared to HCT-8DDP cells. The anti-gamma-GCS Rz significantly down-regulated gamma-GCS gene expression as well as MRP/MDR1 expression, and reversed resistance to CDDP, DOX and VP-16. These results suggested that gamma-GCS plays an important role in both cisplatin and multidrug resistance in human cancer cells.  相似文献   

20.
The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions. (Mol Cell Biochem 175: 225–232, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号