首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of mass transfer on productivity can become a crucial aspect in the fermentative production of bulk chemicals. For highly aerobic bioprocesses the oxygen transfer rate (OTR) and productivity are coupled. The achievable space time yields can often be correlated to the mass transfer performance of the respective bioreactor. The oxygen mass transfer capability of a jet aerated loop reactor is discussed in terms of the volumetric oxygen mass transfer coefficient kLa [h?1] and the energetic oxygen transfer efficiency E [kgO2 kW?1 h?1]. The jet aerated loop reactor (JLR) is compared to the frequently deployed aerated stirred tank reactor. In jet aerated reactors high local power densities in the mixing zone allow higher mass transfer rates, compared to aerated stirred tank reactors. When both reactors are operated at identical volumetric power input and aeration rates, local kLa values up to 1.5 times higher are possible with the JLR. High dispersion efficiencies in the JLR can be maintained even if the nozzle is supplied with pressurized gas. For increased oxygen demands (above 120 mmol L?1 h?1) improved energetic oxygen transfer efficiencies of up to 100 % were found for a JLR compared to an aerated stirred tank reactor operating with Rushton turbines.  相似文献   

2.
High-throughput (HT) miniature bioreactor (MBR) systems are becoming increasingly important to rapidly perform clonal selection, strain improvement screening, and culture media and process optimization. This study documents the initial assessment of a 24-well plate MBR system, Micro (micro)-24, for Saccharomyces cerevisiae, Escherichia coli, and Pichia pastoris cultivations. MBR batch cultivations for S. cerevisiae demonstrated comparable growth to a 20-L stirred tank bioreactor fermentation by off-line metabolite and biomass analyses. High inter-well reproducibility was observed for process parameters such as on-line temperature, pH and dissolved oxygen. E. coli and P. pastoris strains were also tested in this MBR system under conditions of rapidly increasing oxygen uptake rates (OUR) and at high cell densities, thus requiring the utilization of gas blending for dissolved oxygen and pH control. The E. coli batch fermentations challenged the dissolved oxygen and pH control loop as demonstrated by process excursions below the control set-point during the exponential growth phase on dextrose. For P. pastoris fermentations, the micro-24 was capable of controlling dissolved oxygen, pH, and temperature under batch and fed-batch conditions with subsequent substrate shot feeds and supported biomass levels of 278 g/L wet cell weight (wcw). The average oxygen mass transfer coefficient per non-sparged well were measured at 32.6 +/- 2.4, 46.5 +/- 4.6, 51.6 +/- 3.7, and 56.1 +/- 1.6 h(-1) at the operating conditions of 500, 600, 700, and 800 rpm shaking speed, respectively. The mixing times measured for the agitation settings 500 and 800 rpm were below 5 and 1 s, respectively.  相似文献   

3.
In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5–100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple—easy to assemble, easy to use, easy to clean—cell culture mini‐bioreactors for lab‐scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini‐bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini‐bioreactor were comparable to those observed for 6‐well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini‐bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini‐bioreactor. Biotechnol. Bioeng. 2013; 110: 1106–1118. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Somatic embryo suspension cultures of Picea sitchensis (Sitka spruce) derived from two cell lines, SS03 and SS10, were grown in shake flasks, air-lift, bubble, stirred tank and hanging stirrer bar bioreactors. Cell line SS03 yielded freely suspended and individual stage 1 embryos, while the embryos of SS10 were present in large aggregates. Compared to shake flasks, proliferation in bioreactors resulted in increased biomass; however, cell line morphology influenced the effect of different bioreactor configurations on growth and maturation of embryo cultures. Somatic embryos grown in shake flasks and bioreactors were matured on gelled solid medium and in submerged culture where gelled solid medium was covered with a layer of liquid medium. The number of stage 3 (mature) embryos produced from SS03 in the bubble bioreactor was significantly higher than those from stirred tank and hanging stirrer bar bioreactors with both solid medium and submerged culture. Submerged culture was unsuitable for SS10 embryo maturation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Cysteine proteases from Jacaratia mexicana, an endemic Mexican plant, could compete in industrial applications with papain. Currently the only way to obtain these proteases is by extracting them from the wild plant. An alternative source of these enzymes is by J. mexicana suspension culture. In this work, this culture was carried out in airlift, bubble column and stirred tank bioreactors, and the effects of shear rate and microturbulence on cell growth, protein accumulation and proteolytic activity were determined. The shear rates in the stirred tank, bubble column and airlift bioreactors were 274 1/s, 13 1/s and 36 1/s respectively, and microturbulences (symbolized by λ, in units of μm) were 46, 79, and 77 μm, respectively. Protein levels and proteolytic activity were linearly correlated with both shear rate and microturbulence. A higher shear rate and a more intensive microturbulence occurred in the stirred tank, producing higher protein accumulation and higher proteolytic activity compared with those of the other two bioreactor systems. Higher shear rate and microturbulence had an elicitor effect on protease synthesis, because microturbulence in stirred tank bioreactors was lower than the average length of J. mexicana cells. Furthermore, cells in the stirred tank were smaller and thinner than those grown in shake flask, bubble column and airlift bioreactors. In summary, proteases were produced by J. mexicana cell cultures in a stirred tank under conditions of high shear rate and intensive microturbulence, which are similar to those which occur in industrial stirred tanks. These results encourage continuation of the process development for large scale production of these proteases by this technology.  相似文献   

6.
A novel milliliter-scale bioreactor equipped with a gas-inducing impeller was developed with oxygen transfer coefficients as high as in laboratory and industrial stirred-tank bioreactors. The bioreactor reaches oxygen transfer coefficients of >0.4 s(-1). Oxygen transfer coefficients of >0.2 s(-1) can be maintained over a range of 8- to 12-mL reaction volume. A reaction block with integrated heat exchangers was developed for 48-mL-scale bioreactors. The block can be closed with a single gas cover spreading sterile process gas from a central inlet into the headspace of all bioreactors. The gas cover simultaneously acts as a sterile barrier, making the reaction block a stand-alone device that represents an alternative to 48 parallel-operated shake flasks on a much smaller footprint. Process control software was developed to control a liquid-handling system for automated sampling, titration of pH, substrate feeding, and a microtiter plate reader for automated atline pH and atline optical density analytics. The liquid-handling parameters for titration agent, feeding solution, and cell samples were optimized to increase data quality. A simple proportional pH-control algorithm and intermittent titration of pH enabled Escherichia coli growth to a dry cell weight of 20.5 g L(-1) in fed-batch cultivation with air aeration. Growth of E. coli at the milliliter scale (10 mL) was shown to be equivalent to laboratory scale (3 L) with regard to growth rate, mu, and biomass yield, Y(XS).  相似文献   

7.
The use of small scale bioreactors that are mechanically and functionally similar to large scale reactors is highly desirable to accelerate bioprocess development because they enable well-defined scale translations. In this study, a 25-mL miniaturized stirred tank bioreactor (MSBR) has been characterized in terms of its power input, hydrodynamics, and volumetric oxygen transfer coefficient (k(L)a) to assess its potential to grow high cell density (HCD) cultures using adequate scale-down criteria. Engineering characterization results show scale down, based on matched specific power input (P(G)/V), is feasible from a 20-L pilot scale stirred tank bioreactor. Results from fed-batch fermentations performed using Fab' producing E. coli W3110 at matched (P(G)/V) in the MSBR and 20-L STR demonstrated that the MSBR can accurately scale down the 20-L fermentation performance in terms of growth and Fab' production. Successful implementation of a fed-batch strategy in the MSBR resulted in maximum optical density of ca. 114 and total Fab' concentration of 940 μg/mL compared with ca. 118 and 990 μg/mL in 20-L STR. Furthermore, the use of the MSBR in conjunction with primary recovery scale-down tools to assess the harvest material of both reactors showed comparable shear sensitivity and centrifugation performance. The conjoint use of the MSBR with ultra scale-down (USD) centrifugation mimics can provide a cost-efficient manner in which to design and develop bioprocesses that account for good upstream performance as well as their manufacturability downstream.  相似文献   

8.
9.
The specific aspects of airlift reactors emphasizing their function relevance to particular application as bioreactors are presented. The two main groups of airlift reactors – external-loop and concentric-tube reactors – were investigated on a pilot-plant scale with regard to their performance during the cultivation of unicellular and filamentous microorganisms which produce Bacitracin, Cephalosporin C and Nystatin. Some results were compared to those obtained in conventional stirred tank bioreactors. The comparison was carried out based on physical properties (oxygen transfer rate (OTR), volumetric mass transfer coefficient (kLa) and efficiency of oxygen transfer (E)), cell mass, productivity and substrate consumption, secondary metabolite production, and efficiency of the product formation with regard to the specific power input. It was shown that B. licheniformis, C. acremonium and S. noursei fermentations occurred similarly to those performed in stirred vessels, proving that the capacity of the airlift bioreactors surpassed the problems which arise from the morphology and rheology of the broths. From the chemical engineering point of view, it was obvious that the primary tasks of a bioreactor (uniform distribution of microorganisms and nutrients over the entire fermenter volume, appropriate supply of biomass with nutrients and oxygen) were fulfilled by the airlift bioreactors tested. In addition, the efficiency of oxygen transfer (OTR referred to power input) in the airlift fermenters proved to be about 38% higher than in the stirred tank bioreactors (expressed as average values), while the sorption efficiency (OTR referred to antibiotic production) was found to be 22% greater in the airlift system than in an STR. Therefore, the biosyntheses were performed with about a 30–40% increase in energy efficiency and energy savings compared to the conventional system. Moreover, the lack of mechanical devices in the airlift system provides greater safety and a gentler environment for the cultivation of microorganisms.  相似文献   

10.
For the production of recombinant human interleukin-2 (IL-2) two different culture processes, a 1-2 liter homogeneous stirred bubble-free aerated system and a dense cell hollow fibre bioreactor were compared. Cultivations were carried out with serum- or protein-free medium formulations. In the stirred culture 0.75 mg IL-2 were produced with 1 l of perfused medium at a maximum cell number of 3 X 10(10). The product yield in the hollow fibre module was only 0.23 mg l-1 at a maximum cell number of 6 X 10(10). In contrast to results with hybridoma or EBV-transformed cell lines, in which hollow fibre bioreactors showed comparable efficiency to perfused stirred tank reactors, the tissue-like cell density is disadvantageous as adherent cells tend to stick together leaving insufficient intercellular space for removal of product.  相似文献   

11.
Suspension cells of Taxus chinensis were cultivated in both shake flasks and bioreactors. The production of taxuyunnanine C (TC) was greatly reduced when the cell cultures were transferred from shake flasks to bioreactors. Oxygen supply, shear stress and stripping-off of gaseous metabolites were considered as potential factors affecting the taxane accumulation in bioreactors. The effects of oxygen supply on the cell growth and metabolism were investigated in a stirred tank bioreactor by altering its oxygen transfer rate (OTR). It was found that both the pattern and amount of TC accumulation were not much changed within the range of OTR as investigated. Comparative studies on the cell cultivation in low shear and high shear generating bioreactors suggest that the decrease of TC formation in bioreactors was not due to the different shear environments in different cultivation vessels. An incorporation of 2% CO(2) in the inlet air was beneficial for the cell growth, but did not improve the TC production in bioreactors. Furthermore, the effects of different levels of ethylene addition into the inlet air on the cell growth and TC production were investigated in a bubble column reactor. The average cell growth rate increased from 0.146 to 0.204 d(-1) as the ethylene concentration was raised from 0 to 50 ppm, and both the content and production of TC were also greatly improved by ethylene addition. At an ethylene concentration of 18 ppm, the highest TC content and volumetric production in the reactor reached 13.28 mg/(g DW) and 163.7 mg/L, respectively, which were almost the same as those in shake flasks. Compared with the control reactor (bubble column without ethylene supplementation), the maximum TC content was increased by 82% and the total production of TC was doubled. The results indicate that ethylene is a key factor in scaling up the process of the suspension cultures of T. chinensis from a shake flask to a bioreactor.  相似文献   

12.
In this study, the impact of dissolved oxygen concentrations oscillations on Corynebacterium glutamicum 2262 ΔldhA growth was studied experimentally and modeled. Aiming at this, a dedicated two-compartment scale down set-up composed of two interconnected aerobic/anaerobic stirred tank bioreactors was used. The mean residence time of bacteria in each compartment was modified by adapting circulation rates and culture volumes in each bioreactor and the resulting temporal ratio of aeration was calculated. The five growth kinetics were then modeled using an original kinetic model coupling Monod growth modeling and the Residence Time Distributions. Our study showed that the microbial growth rate and macroscopic yields were clearly linked to the temporal ratio of aeration, allowing the definition of simple but robust law for process scale-up purpose. It was also revealed that the model proposed precisely agreed with the experimental growth data, whatever the fractions of aeration time imposed experimentally.  相似文献   

13.
Chimeric antigen receptor T‐cell (CAR‐T) therapies have proven clinical efficacy for the treatment of hematological malignancies. However, CAR‐T cell therapies are prohibitively expensive to manufacture. The authors demonstrate the manufacture of human CAR‐T cells from multiple donors in an automated stirred‐tank bioreactor. The authors successfully produced functional human CAR‐T cells from multiple donors under dynamic conditions in a stirred‐tank bioreactor, resulting in overall cell yields which were significantly better than in static T‐flask culture. At agitation speeds of 200 rpm and greater (up to 500 rpm), the CAR‐T cells are able to proliferate effectively, reaching viable cell densities of >5 × 106 cells ml‐1 over 7 days. This is comparable with current expansion systems and significantly better than static expansion platforms (T‐flasks and gas‐permeable culture bags). Importantly, engineered T‐cells post‐expansion retained expression of the CAR gene and retained their cytolytic function even when grown at the highest agitation intensity. This proves that power inputs used in this study do not affect cell efficacy to target and kill the leukemia cells. This is the first demonstration of human CAR‐T cell manufacture in stirred‐tank bioreactors and the findings present significant implications and opportunities for larger‐scale allogeneic CAR‐T production.  相似文献   

14.
《Process Biochemistry》2007,42(1):93-97
Successful scale-up of Azadirachta indica suspension culture for azadirachtin production was done in stirred tank bioreactor with two different impellers. The kinetics of biomass accumulation, nutrient consumption and azadirachtin production of A. indica cell suspension culture were studied in a stirred tank bioreactor equipped with centrifugal impeller and compared with similar bioreactor with a setric impeller to investigate the role of O2 transfer efficiency of centrifugal impeller bioreactor on overall culture metabolism. The maximum cell mass for centrifugal impeller bioreactor and stirred tank bioreactor (with setric impeller) were 18.7 and 15.5 g/L (by dry cell weight) and corresponding azadirachtin concentrations were 0.071 and 0.05 g/L, respectively. Glucose and phosphate were identified as the major growth-limiting nutrients during the bioreactor cultivation. The centrifugal impeller bioreactor demonstrated less shearing and improved O2 transfer than the stirred tank bioreactor equipped with setric impeller with respect to biomass and azadirachtin production.  相似文献   

15.
A series of fed-batch experiments at different agitation speeds were performed using the industrially important strain Trichoderma reesei RUT C-30 in two different bioreactors to understand the close relationship that exists between the shear field within a bioreactor, the morphology of the microorganism, the rheology of cultivation broth, and the process performance. The two bioreactors, stirred tank bioreactor (STB) and reciprocating plate bioreactor (RPB), are characterized by a significantly different shear field to which microorganisms are exposed. Highest biomass concentration (ca. 15 g l−1) was obtained at higher agitation rates in both bioreactors due to better oxygen supply. However, better filter paper activities per mg of protein were obtained at lower agitation in both bioreactors. In both bioreactors, young and healthier fungi in the batch phase were not affected by shear even at higher agitation rates. However, during the fed-batch phase, higher degree of fragmentation of clump morphology at high agitation intensity was confirmed by image analysis. Also, the rheological analysis showed an increase in apparent viscosity during the batch phase and early fed-batch phase due to the increase in the biomass concentration. During the late stages of cultivation, the apparent viscosity decreased due to cell lysis and spore formation.  相似文献   

16.
Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred‐tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer rate. In this study, a Chinese hamster ovary cell line producing a recombinant antibody was cultivated in a 5 L OSR and a 3 L STR, both operated with or without pH control. Effects of bioreactor type and pH control on cell growth and metabolism and on recombinant protein production and glycosylation were determined. In pH‐controlled bioreactors, the glucose consumption and lactate production rates were higher relative to cultures grown in bioreactors without pH control. The cell density and viability were higher in the OSRs than in the STRs, either with or without pH control. Volumetric recombinant antibody yields were not affected by the process conditions, and a glycan analysis of the antibody by mass spectrometry did not reveal major process‐dependent differences in the galactosylation index. The results demonstrated that OSRs are suitable for recombinant protein production from suspension‐adapted animal cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1174–1180, 2016  相似文献   

17.
In biochemical processes involving filamentous microorganisms, the high shear rate may damage suspended cells leading to viability loss and cell disruption. In this work, the influence of the shear conditions in clavulanic acid (CA) production by Streptomyces clavuligerus was evaluated in a 4-dm(3) conventional stirred tank (STB) and in 6-dm(3) concentric-tube airlift (ALB) bioreactors. Batch cultivations were performed in a STB at 600 and 800 rpm and 0.5 vvm (cultivations B1 and B2) and in ALB at 3.0 and 4.1 vvm (cultivations A1 and A2) to define two initial oxygen transfer conditions in both bioreactors. The average shear rate ([Formula: see text]) of the cultivations was estimated using correlations of recent literature based on experimental data of rheological properties of the broth (consistency index, K, and flow index, n) and operating conditions, impeller speed (N) for STB and superficial gas velocity in the riser (UGR) for ALB. In the same oxygen transfer condition, the [Formula: see text] values for ALB were higher than those obtained in STB. The maximum [Formula: see text] presented a strong correlation with a maximum consistency index (K (max)) of the broth. Close values of maximum CA production were obtained in cultivations A1 and A2 (454 and 442 mg L(-1)) with similar maximum [Formula: see text] values of 4,247 and 4,225 s(-1). In cultivations B1 and B2, the maximum CA production of 269 and 402 mg L(-1) were reached with a maximum [Formula: see text] of 904 and 1,786 s(-1). The results show that high values of average shear rate increase the CA production regardless of the oxygen transfer condition and bioreactor model.  相似文献   

18.

Background

Single-use rocking-motion-type bag bioreactors provide advantages compared to standard stirred tank bioreactors by decreased contamination risks, reduction of cleaning and sterilization time, lower investment costs, and simple and cheaper validation. Currently, they are widely used for cell cultures although their use for small and medium scale production of recombinant proteins with microbial hosts might be very attractive. However, the utilization of rocking- or wave-induced motion-type bioreactors for fast growing aerobic microbes is limited because of their lower oxygen mass transfer rate. A conventional approach to reduce the oxygen demand of a culture is the fed-batch technology. New developments, such as the BIOSTAT® CultiBag RM system pave the way for applying advanced fed-batch control strategies also in rocking-motion-type bioreactors. Alternatively, internal substrate delivery systems such as EnBase® Flo provide an opportunity for adopting simple to use fed-batch-type strategies to shaken cultures. Here, we investigate the possibilities which both strategies offer in view of high cell density cultivation of E. coli and recombinant protein production.

Results

Cultivation of E. coli in the BIOSTAT® CultiBag RM system in a conventional batch mode without control yielded an optical density (OD600) of 3 to 4 which is comparable to shake flasks. The culture runs into oxygen limitation. In a glucose limited fed-batch culture with an exponential feed and oxygen pulsing, the culture grew fully aerobically to an OD600 of 60 (20 g L-1 cell dry weight). By the use of an internal controlled glucose delivery system, EnBase® Flo, OD600 of 30 (10 g L-1 cell dry weight) is obtained without the demand of computer controlled external nutrient supply. EnBase® Flo also worked well in the CultiBag RM system with a recombinant E. coli RB791 strain expressing a heterologous alcohol dehydrogenase (ADH) to very high levels, indicating that the enzyme based feed supply strategy functions well for recombinant protein production also in a rocking-motion-type bioreactor.

Conclusions

Rocking-motion-type bioreactors may provide an interesting alternative to standard cultivation in bioreactors for cultivation of bacteria and recombinant protein production. The BIOSTAT® Cultibag RM system with the single-use sensors and advanced control system paves the way for the fed-batch technology also to rocking-motion-type bioreactors. It is possible to reach cell densities which are far above shake flasks and typical for stirred tank reactors with the improved oxygen transfer rate. For more simple applications the EnBase® Flo method offers an easy and robust solution for rocking-motion-systems which do not have such advanced control possibilities.
  相似文献   

19.
Miniature parallel bioreactors are becoming increasingly important as tools to facilitate rapid bioprocess design. Once the most promising strain and culture conditions have been identified a suitable scale-up basis needs to be established in order that the cell growth rates and product yields achieved in small scale optimization studies are maintained at larger scales. Recently we have reported on the design of a miniature stirred bioreactor system capable of parallel operation [Gill et al. (2008); Biochem Eng J 39:164-176]. In order to enable the predictive scale-up of miniature bioreactor results the current study describes a more detailed investigation of the bioreactor mixing and oxygen mass transfer characteristics and the creation of predictive engineering correlations useful for scale-up studies. A Power number of 3.5 for the miniature turbine impeller was first established based on experimental ungassed power consumption measurements. The variation of the measured gassed to ungassed power ratio, P(g)/P(ug), was then shown to be adequately predicted by existing correlations proposed by Cui et al. [Cui et al. (1996); Chem Eng Sci 51:2631-2636] and Mockel et al. [Mockel et al. (1990); Acta Biotechnol 10:215-224]. A correlation relating the measured oxygen mass transfer coefficient, k(L)a, to the gassed power per unit volume and superficial gas velocity was also established for the miniature bioreactor. Based on these correlations a series of scale-up studies at matched k(L)a (0.06-0.11 s(-1)) and P(g)/V (657-2,960 W m(-3)) were performed for the batch growth of Escherichia coli TOP10 pQR239 using glycerol as a carbon source. Constant k(L)a was shown to be the most reliable basis for predictive scale-up of miniature bioreactor results to conventional laboratory scale. This gave good agreement in both cell growth and oxygen utilization kinetics over the range of k(L)a values investigated. The work described here thus gives further insight into the performance of the miniature bioreactor design and will aid its use as a tool for rapid fermentation process development.  相似文献   

20.
Mammalian cells have been widely used to produce therapeutic proteins in stirred bioreactors in suspension culture. Local hydrodynamics can have a great impact on cell proliferation and protein synthesis, but there are few reports on spatial heterogeneity of nutrients, gas bubbles, and mass transfer coefficients. We have employed computational fluid dynamics (CFD) coupled with population balance equations to study local hydrodynamics in a 20 L stirred bioreactor. The flow patterns, energy dissipation rates, gas volume fraction, gas bubble size distribution and local mass transfer coefficient have been displayed throughout the whole bioreactor. Their implications for mammalian cell culture have been discussed. This study provides an insight into rational design and optimum operation conditions in a stirred bioreactor for mammalian cell cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号