首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppression subtractive hybridization (SSH) was used to identify genes present in the systemic crucifer black rot pathogen Xanthomonas campestris pv. campestris 528T but missing from the nonsystemic crucifer leaf spot pathogen, X. campestris pv. armoraciae 417. Among the DNA fragments unique to 528T was Xcc2109, one of eight putative avr genes identified in the published 528T genome (NC_003902). Individual and sequential deletion, insertion mutations, or both of all eight 528T avr gene loci were made, but no change in pathogenicity was observed with any combination of avr mutations, including a strain with all eight avr genes deleted. However, insertion or deletion mutants affecting the Xcc2109 locus lost avirulence (i.e., became virulent) on Florida Mustard, an X. campestris pv. campestris race-determining, differential host. The Xcc2109 open reading frame as annotated was cloned and found to be nonfunctional. A longer gene, encompassing Xcc2109 and here designated avrXccFM, was cloned and found to complement the Xcc2109 mutants and to confer avirulence to two additional wild-type X. campestris pv. campestris strains, thereby changing their races. Resistance in Florida Mustard to 528T strains carrying avrXccFM occurred without a typical hypersensitive response (HR) on leaves, although a vascular HR was observed in seedlings.  相似文献   

2.
Transposon mutagenesis was used to isolate nonpathogenic mutants of Xanthomonas campestris pv. glycines 8ra, which causes bacterial pustule disease in soybean. A 6.1-kb DNA region in which a mutation gave loss of pathogenicity was isolated and found to carry six open reading frames (ORFs). Four ORFs had homology with hrcU, hrcV, hrcR, and hrcS genes of Ralstonia solanacearum and X. campestris pv. vesicatoria. One nonpathogenic mutant, X. campestris pv. glycines H80, lost pathogenicity on soybean but was able to elicit the hypersensitive response (HR) on nonhost pepper and tomato plants. This mutant still multiplied as well as the wild type in the leaves or cotyledons of soybean. Although the DNA and amino acid sequences showed high homology with known hrp genes, the hrcU-homolog ORF is not required for HR induction on nonhost plants, pepper and tomato, or for the multiplication of bacteria in the host plant. This gene was only required for the pathogenic symptoms of X. campestris pv. glycines 8ra on soybean.  相似文献   

3.
A gene cluster containing lexA, recA and recX genes was previously identified and characterized in Xanthomonas campestris pathovar citri (X. c. pv. citri). We have now cloned and sequenced the corresponding regions in the Xanthomonas campestris pv. campestris (X. c. pv. campestris) and Xanthomonas oryzae pathovar oryzae (X. o. pv. oryzae) chromosome. Sequence analysis of these gene clusters showed significant homology to the previously reported lexA, recA and recX genes. The genetic linkage and the deduced amino acid sequences of these genes displayed very high identity in different pathovars of X. campestris as well as in X. oryzae. Immunoblot analysis revealed that the over-expressed LexA protein of X. c. pv. citri functioned as a repressor of recA expression in X. c. pv. campestris, indicating that the recombinant X. c. pv. citri LexA protein was functional in a different X. campestris pathovar. The abundance of RecA protein was markedly increased upon exposure of X. c. pv. campestris to mitomycin C, and an upstream region of this gene was shown to confer sensitivity to positive regulation by mitomycin C on a luciferase reporter gene construct. A symmetrical sequence of TTAGTAGTAATACTACTAA present within all three Xanthomonas lexA promoters and a highly conserved sequence of TTAGCCCCATACCGAA present in the three regulatory regions of recA indicate that the SOS box of Xanthomonas strains might differ from that of Escherichia coli.  相似文献   

4.
5.
The nucleotide sequence of the gene (engXCA) encoding the major extracellular endoglucanase (ENGXCA) of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (X. c. campestris) was determined and compared with the N-terminal amino acid (aa) sequence of the purified enzyme. An open reading frame of 1479 bp encoding 493 aa was identified, of which the N-terminal 25 aa represent a potential signal peptide. Determination of the exact position of a Tn5 insertion within engXCA, which did not reduce the encoded enzyme activity, indicated that the C-terminal region of the protein is not crucial for ENGXCA activity. Comparison of the complete deduced aa sequence with those deduced from other endoglucanase- and exoglucanase-encoding genes revealed a region with a high degree of homology, located towards the C terminus of the protein. These data indicate that the X. c. campestris ENGXCA may have a domain structure similar to that of many other bacterial and fungal cellulolytic enzymes. Hydrophobic cluster analysis was performed on the deduced aa sequence. Comparison of this analysis with those of 30 other cellulase sequences belonging to six different families indicated that the X. c. campestris enzyme can be classified in family A. The two aa residues which had previously been identified as 'potentially catalytic' within this family of cellulases, are conserved in the X. c. campestris ENGXCA.  相似文献   

6.
During plant-microbe interactions and in the environment, Xanthomonas campestris pv. phaseoli is likely to be exposed to high concentrations of multiple oxidants. Here, we show that simultaneous exposures of the bacteria to multiple oxidants affects cell survival in a complex manner. A superoxide generator (menadione) enhanced the lethal effect of an organic peroxide (tert-butyl hydroperoxide) by 1, 000-fold; conversely, treatment of cells with menadione plus H(2)O(2) resulted in 100-fold protection compared to that for cells treated with the individual oxidants. Treatment of X. campestris with a combination of H(2)O(2) and tert-butyl hydroperoxide elicited no additive or protective effect. High levels of catalase alone are sufficient to protect cells against the lethal effect of menadione plus H(2)O(2) and tert-butyl hydroperoxide plus H(2)O(2). These data suggest that H(2)O(2) is the lethal agent responsible for killing the bacteria as a result of these treatments. However, increased expression of individual genes for peroxide (alkyl hydroperoxide reductase, catalase)- and superoxide (superoxide dismutase)-scavenging enzymes or concerted induction of oxidative stress-protective genes by menadione gave no protection against killing by a combination of menadione plus tert-butyl hydroperoxide. However, X. campestris cells in the stationary phase and a spontaneous H(2)O(2)-resistant mutant (X. campestris pv. phaseoli HR) were more resistant to killing by menadione plus tert-butyl hydroperoxide. These findings give new insight into oxidant killing of Xanthomonas spp. that could be generally applied to other bacteria.  相似文献   

7.
The majority of bacterial plant diseases are caused by members of three bacterial genera, Pseudomonas, Xanthomonas, and Erwinia. The identification and characterization of mutants that have lost the abilities to provoke disease symptoms on a compatible host and to induce a defensive hypersensitive reaction (HR) on an incompatible host have led to the discovery of clusters of hrp genes (hypersensitive reaction and pathogenicity) in phytopathogenic bacteria from each of these genera. Here, we report that predicted protein sequences of three hrp genes from Pseudomonas solanacearum show remarkable sequence similarity to key virulence determinants of animal pathogenic bacteria of the genus Yersinia. We also demonstrate DNA homologies between P. solanacearum hrp genes and hrp gene clusters of P. syringae pv. phaseolicola, Xanthomonas campestris pv. campestris, and Erwinia amylovora. By comparing the role of the Yersinia determinants in the control of the extracellular production of proteins required for pathogenicity, we propose that hrp genes code for an export system that might be conserved among many diverse bacterial pathogens of plants and animals but that is distinct from the general export pathway.  相似文献   

8.
A chemical mutagenized population of Arabidopsis Col-0-gl plants was screened for an altered hypersensitive response (HR) after spray inoculation with an HR-inducing isolate of Xanthomonas campestris pv. campestris (strain 147). Three classes of mutant were identified: those exhibiting an HR- phenotype or partial loss of HR; hyper-responsive mutants showing necrotic lesions rapidly leading to the collapse of leaves; and susceptible mutants. One mutant belonging to the susceptible class, hxc-2, was extensively characterized. The compatible phenotype observed several days after initiation of the interaction was confirmed by measurement of in planta bacterial growth and use of bacterial strains constitutively expressing the GUS reporter gene. In the same way, accumulation of autofluorescent compounds, salicylic acid production and defence gene expression in the mutant were found to be similar to that displayed by the susceptible ecotype. Inoculation of hxc-2 with different avirulent bacteria suggests that the mutation is specific for the interaction with the Xcc 147 strain, although the mutation has been shown to affect a single dominant locus, different from the resistance locus defined by genetic analysis of resistance to Xcc 147. Genetic mapping of the mutation indicated that it is located on chromosome III, defining a previously unknown resistance function in response to X. c. campestris.  相似文献   

9.
10.
11.
12.
Xanthomonas campestris pv. campestris, the causal agent of black rot disease, produces a suite of extracellular cell-wall degrading enzymes (CWDE) that are involved in bacterial virulence. Polygalacturonase (PG) is an important CWDE and functions to degrade the pectic layers of plant cell walls. Although previous studies have documented the virulence functions of PG in Erwinia and Ralstonia species, the regulation of PG genes still needs to be elucidated. In this study, we identified two novel PG genes (pghAxc and pghBxc) encoding functional PG from X. campestris pv. campestris 8004. The expressions of these two PG genes are regulated by the type III secretion regulators HrpX and HrpG and the global regulator Clp. These PG genes could be efficiently induced in planta and were required for the full virulence of X. campestris pv. campestris to Arabidopsis. In addition, these PG were confirmed to be secreted via the type II secretion system in an Xps-dependent manner.  相似文献   

13.
A pLAFR3 cosmid clone designated pVir2 containing a 25-kilobase (kb) DNA insert was isolated from a wild-type Pseudomonas solanacearum GMI1000 genomic library. This cosmid was shown to complement all but one of the nine Tn5-induced mutants which have been isolated after random mutagenesis and which have lost both pathogenicity toward tomato and ability to induce hypersensitive reaction (HR) on tobacco (hrp mutants). The insert is colinear with the genome and provides restoration of the HR-inducing ability when transferred into several Tn5-induced hrp mutants, but failed to complement deletion mutants extending on both sides of the pVir2 region. Localized mutagenesis demonstrated that the hrp genes are clustered within a 17.5-kb region of pVir2 and that this cluster probably extends on the genomic region adjacent to the pVir2 insert. A 3-kb region adjacent to the hrp cluster modulates aggressiveness toward tomato but does not control HR-inducing ability. Sequences within the hrp cluster of pVir2 have homology with the genomic DNA of Xanthomonas campestris strains representing eight different pathovars, suggesting that a set of common pathogenicity functions could be shared by P. solanacearum and X. campestris.  相似文献   

14.
The pathogenicity gene, pthA, of Xanthomonas citri is required to elicit symptoms of Asiatic citrus canker disease; introduction of pthA into Xanthomonas strains that are mildly pathogenic or opportunistic on citrus confers the ability to induce cankers on citrus (S. Swarup, R. De Feyter, R. H. Brlansky, and D. W. Gabriel, Phytopathology 81:802-809, 1991). The structure and the function of pthA in other xanthomonads and in X. citri were further investigated. When pthA was introduced into strains of X. phaseoli and X. campestris pv. malvacearum (neither pathogenic to citrus), the transconjugants remained nonpathogenic to citrus and elicited a hypersensitive response (HR) on their respective hosts, bean and cotton. In X. c. pv. malvacearum, pthA conferred cultivar-specific avirulence. Structurally, pthA is highly similar to avrBs3 and avrBsP from X. c. pv. vesicatoria and to avrB4, avrb6, avrb7, avrBIn, avrB101, and avrB102 from X. c. pv. malvacearum. Surprisingly, marker-exchanged pthA::Tn5-gusA mutant B21.2 of X. citri specifically lost the ability to induce the nonhost HR on bean, but retained the ability to induce the nonhost HR on cotton. The loss of the ability of B21.2 to elicit an HR on bean was restored by introduction of cloned pthA, indicating that the genetics of the nonhost HR may be the same as that found in homologous interactions involving specific avr genes. In contrast with expectations of homologous HR reactions, however, elimination of pthA function (resulting in loss of HR) did not result in water-soaking or even moderate levels of growth in planta of X. citri on bean; the nonhost HR, therefore, may not be responsible for the "resistance" of bean to X. citri and may not limit the host range of X. citri on bean. The pleiotropic avirulence function of pthA and the heterologous HR of bean to X. citri are both evidently gratuitous.  相似文献   

15.
16.
Procedures for the introduction of plasmid DNA into Gram-negative bacteria have been adapted and optimized to permit transformation of the plant pathogen Xanthomonas campestris pathovar campestris with the cloning vector pKT230 and other broad-host-range plasmids. The technique involves CaCl2-induced competence and heat shock and is similar to that routinely used for Escherichia coli. Wild-type X. c. campestris strains appear to restrict incoming unmodified DNA, so that plasmid DNA for transformation must be prepared from X. c. campestris (into which it has previously been introduced by conjugation). To overcome this disadvantage a restriction-deficient mutant has been isolated.  相似文献   

17.
18.
19.
The hypersensitive response (HR) involves rapid death of cells at the site of pathogen infection and is thought to limit pathogen growth through the plant. Ethylene regulates senescence and developmental programmed cell death, but its role in hypersensitive cell death is less clear. Expression of two ethylene receptor genes, NR and LeETR4, is induced in tomato (Lycopersicon esculentum cv. Mill) leaves during an HR to Xanthomonas campestris pv. vesicatoria, with the greatest increase observed in LeETR4. LeETR4 antisense plants previously were shown to exhibit increased sensitivity to ethylene. These plants also exhibit greatly reduced induction of LeETR4 expression during infection and an accelerated HR at inoculum concentrations ranging from 10(5) to 10(7) CFU/ml. Increases in ethylene synthesis and pathogenesis-related gene expression are greater and more rapid in infected LeETR4 antisense plants, indicating an enhanced defense response. Populations of avirulent X. campestris pv. vesicatoria decrease more quickly and to a lower level in the transgenic plants, indicating a greater resistance to this pathogen. Because the ethylene action inhibitor 1-methylcyclopropene alleviates the enhanced HR phenotype in LeETR4 antisense plants, these changes in pathogen response are a result of increased ethylene sensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号