首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yersinia pestis expresses a set of plasmid-encoded virulence proteins called Yops and LcrV that are secreted and translocated into eukaryotic cells by a type III secretion system. LcrV is a multifunctional protein with antihost and positive regulatory effects on Yops secretion that forms a stable complex with a negative regulatory protein, LcrG. LcrG has been proposed to block the secretion apparatus (Ysc) from the cytoplasmic face of the inner membrane under nonpermissive conditions for Yops secretion, when levels of LcrV in the cell are low. A model has been proposed to describe secretion control based on the relative levels of LcrG and LcrV in the bacterial cytoplasm. This model proposes that under secretion-permissive conditions, levels of LcrV are increased relative to levels of LcrG, so that the excess LcrV titrates LcrG away from the Ysc, allowing secretion of Yops to occur. To further test this model, a mutant LcrG protein that could no longer interact with LcrV was created. Expression of this LcrG variant blocked secretion of Yops and LcrV under secretion permissive conditions in vitro and in a tissue culture model. These results agree with the previously described secretion-blocking activity of LcrG and demonstrate that the interaction of LcrV with LcrG is necessary for controlling Yops secretion.  相似文献   

2.
Pathogenic Yersinia species employ type III machines to transport virulence factors across the bacterial envelope. Some substrates for the type III machinery are secreted into the extracellular medium, whereas others are targeted into the cytosol of host cells. We found that during infection of tissue culture cells, yersiniae secrete small amounts of LcrV into the extracellular medium. Knockout mutations of lcrV abolish Yersinia targeting and reduce expression of the lcrGVHyopBD operon. In contrast, a block in LcrV secretion does not affect targeting, but results in premature expression and secretion of Yop proteins into the extracellular medium. LcrV-mediated activation of the type III pathway is thought to occur by sequestration of the regulatory factor LcrG, presumably via the formation of LcrV.LcrG complexes. These results suggest that intrabacterial LcrV regulates the expression and targeting of Yop proteins during Yersinia infection, whereas secreted LcrV is required to ensure specificity of Yop injection into eukaryotic cells.  相似文献   

3.

Background

Secretion of anti-host proteins by Yersinia pestis via a type III mechanism is not constitutive. The process is tightly regulated and secretion occurs only after an appropriate signal is received. The interaction of LcrG and LcrV has been demonstrated to play a pivotal role in secretion control. Previous work has shown that when LcrG is incapable of interacting with LcrV, secretion of anti-host proteins is prevented. Therefore, an understanding of how LcrG interacts with LcrV is required to evaluate how this interaction regulates the type III secretion system of Y. pestis. Additionally, information about structure-function relationships within LcrG is necessary to fully understand the role of this key regulatory protein.

Results

In this study we demonstrate that the N-terminus of LcrG is required for interaction with LcrV. The interaction likely occurs within a predicted amphipathic coiled-coil domain within LcrG. Our results demonstrate that the hydrophobic face of the putative helix is required for LcrV interaction. Additionally, we demonstrate that the LcrG homolog, PcrG, is incapable of blocking type III secretion in Y. pestis. A genetic selection was utilized to obtain a PcrG variant capable of blocking secretion. This PcrG variant allowed us to locate a region of LcrG involved in secretion blocking.

Conclusion

Our results demonstrate that LcrG interacts with LcrV via hydrophobic interactions located in the N-terminus of LcrG within a predicted coiled-coil motif. We also obtained preliminary evidence that the secretion blocking activity of LcrG is located between amino acids 39 and 53.  相似文献   

4.
LcrV, a multifunctional protein, acts as a positive regulator of effector protein secretion for the type III secretion system (T3SS) in Yersinia pestis by interaction with the negative regulator LcrG. In this study, LcrV was analyzed to identify regions required for LcrG interaction. Random-linker insertion mutagenesis, deletion analysis, and site-directed mutagenesis of hydrophobic amino acids between residues 290 and 311 allowed the isolation of an LcrV mutant (LcrV L291R F308R) defective for LcrG interaction. The new residues identified in LcrG interaction lie in helix 12 of LcrV; residues in helix 7 of LcrV are known to be involved in LcrG interaction. Helix 7 and helix 12 of LcrV interact to form an intramolecular coiled coil; these new results suggest that the intramolecular coiled coil in LcrV is required for LcrG interaction and activation of the T3SS.  相似文献   

5.
Yersinia enterocolitica target effector Yop proteins into the cytosol of eukaryotic cells by a mechanism requiring the type III machinery. LcrG and LcrV have been suggested to fulfill essential functions during the type III targeting of effector Yops. It is reported here that knockout mutations of lcrG caused mutant yersiniae to prematurely secrete Yops into the extracellular medium without abolishing the type III targeting mechanism (Los phenotype [loss of type III targeting specificity]). Knockout mutations in lcrV reduced type III targeting of mutant yersiniae but did not promote secretion into the extracellular medium (Not [no type III targeting]). However, knockout mutations in both genes caused DeltalcrGV yersiniae to display a Los phenotype similar to that of strains carrying knockout mutations in lcrG alone. LcrG binding to LcrV resulted in the formation of soluble LcrGV complexes in the bacterial cytoplasm. Membrane-associated, bacterial-surface-displayed or -secreted LcrG could not be detected. Most of LcrV was located in the bacterial cytoplasm; however, small amounts were secreted into the extracellular medium. These data support a model whereby LcrG may act as a negative regulator of type III targeting in the bacterial cytoplasm, an activity that is modulated by LcrG binding to LcrV. No support could be gathered for the hypothesis whereby LcrG and LcrV may act as a bacterial surface receptor for host cells, allowing effector Yop translocation across the eukaryotic plasma membrane.  相似文献   

6.
Yersinia pestis, the causative agent of plague, exports a set of virulence proteins called Yops upon contact with eukaryotic cells. A subset of these Yops is translocated directly into the cytosol of host cells. In this study, a novel protein tag-based reporter system is used to measure the translocation of Yops into cultured eukaryotic cells. The reporter system uses a small bipartite phosphorylatable peptide tag, termed the Elk tag. Translocation of an Elk-tagged protein into eukaryotic cells results in host cell protein kinase-dependent phosphorylation of the tag at a specific serine residue, which can subsequently be detected with phosphospecific antibodies. The YopN, TyeA, SycN, YscB and LcrG proteins function to prevent Yop secretion before host cell contact. The role of these proteins was investigated in the translocation of Elk-tagged YopE (YopE129-Elk) and YopN (YopN293-Elk) into HeLa cells. Y. pestis yopN, tyeA, sycN and yscB deletion mutants showed reduced levels of YopE129-Elk phosphorylation compared with the parent strain, indicating that these mutants translocate reduced amounts of YopE. We also demonstrate that YopN293-Elk is translocated into HeLa cells and that this process is more efficient in a Yersinia yop polymutant strain lacking the six translocated effector Yops. Y. pestis sycN and yscB mutants translocated reduced amounts of YopN293-Elk; however, tyeA and lcrG mutants translocated higher amounts of YopN293-Elk compared with the parent strain. These data suggest that TyeA and LcrG function to suppress the secretion of YopN before host cell contact, whereas SycN and YscB facilitate YopN secretion and subsequent translocation.  相似文献   

7.
Yersinia pestis expresses a set of secreted proteins called Yops and the bifunctional LcrV, which has both regulatory and antihost functions. Yops and LcrV expression and the activity of the type III mechanism for their secretion are coordinately regulated by environmental signals such as Ca2+ concentration and eukaryotic cell contact. In vitro, Yops and LcrV are secreted into the culture medium in the absence of Ca2+ as part of the low-Ca2+ response (LCR). The LCR is induced in a tissue culture model by contact with eukaryotic cells that results in Yop translocation into cells and subsequent cytotoxicity. The secretion mechanism is believed to indirectly regulate expression of lcrV and yop operons by controlling the intracellular concentration of a secreted negative regulator. LcrG, a secretion-regulatory protein, is thought to block secretion of Yops and LcrV, possibly at the inner face of the inner membrane. A recent model proposes that when the LCR is induced, the increased expression of LcrV yields an excess of LcrV relative to LcrG, and this is sufficient for LcrV to bind LcrG and unblock secretion. To test this LcrG titration model, LcrG and LcrV were expressed alone or together in a newly constructed lcrG deletion strain, a ΔlcrG2 mutant, of Y. pestis that produces low levels of LcrV and constitutively expresses and secretes Yops. Overexpression of LcrG in this mutant background was able to block secretion and depress expression of Yops in the presence of Ca2+ and to dramatically decrease Yop expression and secretion in growth medium lacking Ca2+. Overexpression of both LcrG and LcrV in the ΔlcrG2 strain restored wild-type levels of Yop expression and Ca2+ control of Yop secretion. Surprisingly, when HeLa cells were infected with the ΔlcrG2 strain, no cytotoxicity was apparent and translocation of Yops was abolished. This correlated with an altered distribution of YopB as measured by accessibility to trypsin. These effects were not due to the absence of LcrG, because they were alleviated by restoration of LcrV expression and secretion alone. LcrV itself was found to enter HeLa cells in a nonpolarized manner. These studies supported the LcrG titration model of LcrV’s regulatory effect at the level of Yop secretion and revealed a further role of LcrV in the deployment of YopB, which in turn is essential for the vectorial translocation of Yops into eukaryotic cells.  相似文献   

8.
Yersiniae are equipped with the Yop virulon, an apparatus that allows extracellular bacteria to deliver toxic Yop proteins inside the host cell cytosol in order to sabotage the communication networks of the host cell or even to cause cell death. LcrG is a component of the Yop virulon involved in the regulation of secretion of the Yops. In this paper, we show that LcrG can bind HeLa cells, and we analyse the role of proteoglycans in this phenomenon. Treatment of the HeLa cells with heparinase I, but not chondroitinase ABC, led to inhibition of binding. Competition assays indicated that heparin and dextran sulphate strongly inhibited binding, but that other glycosaminoglycans did not. This demonstrated that binding of HeLa cells to purified LcrG is caused by heparan sulphate proteoglycans. LcrG could bind directly to heparin-agarose beads and, in agreement with these results, analysis of the protein sequence of Yersinia enterocolitica LcrG revealed heparin-binding motifs. In vitro production and secretion by Y . enterocolitica of the Yops was unaffected by the addition of heparin. However, the addition of exogenous heparin decreased the level of YopE–Cya translocation into HeLa cells. A similar decrease was seen with dextran sulphate, whereas the other glycosaminoglycans tested had no significant effect. Translocation was also decreased by treatment of HeLa cells with heparinitase, but not with chondroitinase. Thus, heparan sulphate proteoglycans have an important role to play in translocation. The interaction between LcrG and heparan sulphate anchored at the surface of HeLa cells could be a signal triggering deployment of the Yop translocation machinery. This is the first report of a eukaryotic receptor interacting with the type III secretion and associated translocation machinery of Yersinia or of other bacteria.  相似文献   

9.
Many gram-negative bacterial pathogenicity factors that function beyond the outer membrane are secreted via a contact-dependent type III secretion system. Two types of substrates are predestined for this mode of secretion, namely, antihost effectors that are translocated directly into target cells and the translocators required for targeting of the effectors across the host cell membrane. N-terminal secretion signals are important for recognition of the protein cargo by the type III secretion machinery. Even though such signals are known for several effectors, a consensus signal sequence is not obvious. One of the translocators, LcrV, has been attributed other functions in addition to its role in translocation. These functions include regulation, presumably via interaction with LcrG inside bacteria, and immunomodulation via interaction with Toll-like receptor 2. Here we wanted to address the significance of the specific targeting of LcrV to the exterior for its function in regulation, effector targeting, and virulence. The results, highlighting key N-terminal amino acids important for LcrV secretion, allowed us to dissect the role of LcrV in regulation from that in effector targeting/virulence. While only low levels of exported LcrV were required for in vitro effector translocation, as deduced by a cell infection assay, fully functional export of LcrV was found to be a prerequisite for its role in virulence in the systemic murine infection model.  相似文献   

10.
Type III-mediated translocation of Yop effectors is an essential virulence mechanism of pathogenic Yersinia. LcrV is the only protein secreted by the type III secretion system that induces protective immunity. LcrV also plays a significant role in the regulation of Yop expression and secretion. The role of LcrV in the virulence process has, however, remained elusive on account of its pleiotropic effects. Here, we show that anti-LcrV antibodies can block the delivery of Yop effectors into the target cell cytosol. This argues strongly for a critical role of LcrV in the Yop translocation process. Additional evidence supporting this role was obtained by genetic analysis. LcrV was found to be present on the bacterial surface before the establishment of bacteria target cell contact. These findings suggest that LcrV serves an important role in the initiation of the translocation process and provides one possible explanation for the mechanism of LcrV-induced protective immunity.  相似文献   

11.
Yersinia species pathogenic to human benefit from a protein transport machinery, a type three secretion system (T3SS), which enables the bacteria to inject effector proteins into host cells. Several of the transport substrates of the Yersinia T3SS, called Yops (Yersinia outer proteins), are assisted by specific chaperones (Syc for specific Yop chaperone) prior to transport. Yersinia enterocolitica SycD (LcrH in Yersinia pestis and Yersinia pseudotuberculosis) is a chaperone dedicated to the assistance of the translocator proteins YopB and YopD, which are assumed to form a pore in the host cell membrane. In an attempt to make SycD amenable to structural investigations we recombinantly expressed SycD with a hexahistidine tag in Escherichia coli. Combining immobilized nickel affinity chromatography and gel filtration we obtained purified SycD with an exceptional yield of 120mg per liter of culture and homogeneity above 95%. Analytical gel filtration and cross-linking experiments revealed the formation of homodimers in solution. Secondary structure analysis based on circular dichroism suggests that SycD is mainly composed of alpha-helical elements. To prove functionality of purified SycD previously suggested interactions of SycD with Yop secretion protein M2 (YscM2), and low calcium response protein V (LcrV), respectively, were reinvestigated.  相似文献   

12.
Pathogenic Yersinia species use a virulence-plasmid encoded type III secretion pathway to escape the innate immune response and to establish infections in lymphoid tissues. At least 22 secretion machinery components are required for type III transport of 14 different Yop proteins, and 10 regulatory factors are responsible for activating this pathway in response to environmental signals. Although the genes for these products are located on the 70-kb virulence plasmid of Yersinia, this extrachromosomal element does not appear to harbor genes that provide for the sensing of environmental signals, such as calcium-, glutamate-, or serum-sensing proteins. To identify such genes, we screened transposon insertion mutants of Y. enterocolitica W22703 for defects in type III secretion and identified ttsA, a chromosomal gene encoding a polytopic membrane protein. ttsA mutant yersiniae synthesize reduced amounts of Yops and display a defect in low-calcium-induced type III secretion of Yop proteins. ttsA mutants are also severely impaired in bacterial motility, a phenotype which is likely due to the reduced expression of flagellar genes. All of these defects were restored by complementation with plasmid-encoded wild-type ttsA. LcrG is a repressor of the Yersinia type III pathway that is activated by an environmental calcium signal. Mutation of the lcrG gene in a ttsA mutant strain restored the type III secretion of Yop proteins, although the double mutant strain secreted Yops in the presence and absence of calcium, similar to the case for mutants that are defective in lcrG gene function alone. To examine the role of ttsA in the establishment of infection, we measured the bacterial dose required to produce an acute lethal disease following intraperitoneal infection of mice. The ttsA insertion caused a greater-than-3-log-unit reduction in virulence compared to that of the parental strain.  相似文献   

13.
Activation of bacterial virulence-associated type III secretion systems (T3SSs) requires direct contact between a bacterium and a eukaryotic cell. In Yersinia pestis, the cytosolic LcrG protein and a cytosolic YopN-TyeA complex function to block T3S in the presence of extracellular calcium and prior to contact with a eukaryotic cell. The mechanism by which the bacterium senses extracellular calcium and/or cell contact and transmits these signals to the cytosolic compartment is unknown. We report here that YscF, a small protein that polymerizes to form the external needle of the T3SS, is essential for the calcium-dependent regulation of T3S. Alanine-scanning mutagenesis was used to identify YscF mutants that secrete virulence proteins in the presence and absence of calcium and prior to contact with a eukaryotic cell. Interestingly, one of the YscF mutants that exhibited constitutive T3S was unable to translocate secreted proteins across the eukaryotic plasma membrane. These data indicate that the YscF needle is a multifunctional structure that participates in virulence protein secretion, in translocation of virulence proteins across eukaryotic membranes and in the cell contact- and calcium-dependent regulation of T3S.  相似文献   

14.
15.
LcrQ is a regulatory protein unique to Yersinia. Previous study in Yersinia pseudotuberculosis and Yersinia enterocolitica prompted the model in which LcrQ negatively regulates the expression of a set of virulence proteins called Yops, and its secretion upon activation of the Yop secretion (Ysc) type III secretion system permits full induction of Yops expression. In this study, we tested the hypothesis that LcrQ's effects on Yops expression might be indirect. Excess LcrQ was found to exert an inhibitory effect specifically at the level of Yops secretion, independent of production, and a normal inner Ysc gate protein LcrG was required for this activity. However, overexpression of LcrQ did not prevent YopH secretion, suggesting that LcrQ's effects at the Ysc discriminate among the Yops. We tested this idea by determining the effects of deletion or overexpression of LcrQ, YopH and their common chaperone SycH on early Yop secretion through the Ysc. Together, our findings indicated that LcrQ is not a negative regulator directly, but it acts in partnership with SycH at the Ysc gate to control the entry of a set of Ysc secretion substrates. A hierarchy of YopH secretion before YopE appears to be imposed by SycH in conjunction with both LcrQ and YopH. LcrQ and SycH in addition influenced the deployment of LcrV, a component of the Yops delivery mechanism. Accordingly, LcrQ appears to be a central player in determining the substrate specificity of the Ysc.  相似文献   

16.
Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague.  相似文献   

17.
Pathogenic Yersinia species use a type III secretion system to inhibit phagocytosis by eukaryotic cells. At 37 degrees C, the secretion system is assembled, forming a needle-like structure on the bacterial cell surface. Upon eukaryotic cell contact, six effector proteins, called Yops, are translocated into the eukaryotic cell cytosol. Here, we show that a yscP mutant exports an increased amount of the needle component YscF to the bacterial cell surface but is unable to efficiently secrete effector Yops. Mutations in the cytoplasmic domain of the inner membrane protein YscU suppress the yscP phenotype by reducing the level of YscF secretion and increasing the level of Yop secretion. These results suggest that YscP and YscU coordinately regulate the substrate specificity of the Yersinia type III secretion system. Furthermore, we show that YscP and YscU act upstream of the cell contact sensor YopN as well as the inner gatekeeper LcrG in the pathway of substrate export regulation. These results further strengthen the strong evolutionary link between flagellar biosynthesis and type III synthesis.  相似文献   

18.
In both plant and mammalian Gram-negative pathogenic bacteria, type III secretion systems (TTSSs) play a crucial role in interactions with the host. All these systems share conserved proteins (called Hrc in plant pathogens), but each bacterium also produces a variable number of additional type III proteins either unique or with counterparts only in a limited number of related systems. In order to investigate the role of the different proteins encoded by the hrp gene cluster of the phytopathogenic bacterium Ralstonia solanacearum, non-polar mutants in all hrp genes (except for hrcQ) were analysed for their interactions with plants, their ability to secrete the PopA protein and their production of the Hrp pilus. In addition to Hrc proteins and the HrpY major component of the Hrp pilus, four additional Hrp proteins are indispensable for type III secretion and for interactions with plants. We also provide evidence that hrpV and hrpX mutants can still target the HrpY pilin outside the bacterial cell but are impaired in the production of Hrp pili, indicating that HrpV and HrpX proteins are involved in the assembly of this appendage.  相似文献   

19.
Delivery of Yop effector proteins by pathogenic Yersinia across the eukaryotic cell membrane requires LcrV, YopB and YopD. These proteins were also required for channel formation in infected erythrocytes and, using different osmolytes, the contact-dependent haemolysis assay was used to study channel size. Channels associated with LcrV were around 3 nm, whereas the homologous PcrV protein of Pseudomonas aeruginosa induced channels of around 2 nm in diameter. In lipid bilayer membranes, purified LcrV and PcrV induced a stepwise conductance increase of 3 nS and 1 nS, respectively, in 1 M KCl. The regions important for channel size were localized to amino acids 127-195 of LcrV and to amino acids 106-173 of PcrV. The size of the channel correlated with the ability to translocate Yop effectors into host cells. We suggest that LcrV is a size-determining structural component of the Yop translocon.  相似文献   

20.
LcrV, the type III needle cap protein of pathogenic Yersinia, has been proposed to function as a tether between YscF, the needle protein, and YopB-YopD to constitute the injectisome, a conduit for the translocation of effector proteins into host cells. Further, insertion of LcrV-capped needles from a calcium-rich environment into host cells may trigger the low-calcium signal for effector translocation. Here, we used a genetic approach to test the hypothesis that the needle cap responds to the low-calcium signal by promoting injectisome assembly. Growth restriction of Yersinia pestis in the absence of calcium (low-calcium response [LCR+] phenotype) was exploited to isolate dominant negative lcrV alleles with missense mutations in its amber stop codon (lcrV*327). The addition of at least four amino acids or the eight-residue Strep tag to the C terminus was sufficient to generate an LCR phenotype, with variant LcrV capping type III needles that cannot assemble the YopD injectisome component. The C-terminal Strep tag appears buried within the cap structure, blocking effector transport even in Y. pestis yscF variants that are otherwise calcium blind, a constitutive type III secretion phenotype. Thus, LcrV*327 mutants arrest the needle cap in a state in which it cannot respond to the low-calcium signal with either injectisome assembly or the activation of type III secretion. Insertion of the Strep tag at other positions of LcrV produced variants with wild-type LCR+, LCR, or dominant negative LCR phenotypes, thereby allowing us to identify discrete sites within LcrV as essential for its attributes as a secretion substrate, needle cap, and injectisome assembly factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号