首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Profilin-1 (Pfn1) is an important actin-regulatory protein that is downregulated in human breast cancer and when forcibly elevated, it suppresses the tumor-initiating ability of triple-negative breast cancer cells. In this study, we demonstrate that Pfn1 overexpression reduces the stem-like phenotype (a key biologic feature associated with higher tumor-initiating potential) of MDA-MB-231 (MDA-231) triple-negative breast cancer cells. Interestingly, the stem-like trait of MDA-231 cells is also attenuated upon depletion of Pfn1. A comparison of cancer stem cell gene (CSC) gene expression signatures between depleted and elevated conditions of Pfn1 further suggest that Pfn1 may be somehow involved in regulating the expression of a few CSC-related genes including MUC1, STAT3, FZD7, and ITGB1. Consistent with the reduced stem-like phenotype associated with loss-of-function of Pfn1, xenograft studies showed lower tumor-initiating frequency of Pfn1-depleted MDA-231 cells compared to their control counterparts. In MMTV:PyMT mouse model, homozygous but not heterozygous deletion of Pfn1 gene leads to severe genetic mosaicism and positive selection of Pfn1-proficient tumor cells further supporting the contention that a complete lack of Pfn1 is likely not conducive for efficient tumor initiation capability of breast cancer cells. In summary, these findings suggest that the maintenance of optimal stemness and tumor-initiating ability of breast cancer cells requires a balanced expression of Pfn1.  相似文献   

2.
Profilin‐1 (Pfn1), a ubiquitously expressed actin‐binding protein, has gained interest in epithelial‐derived cancer because of its downregulation in expression in various adenocarcinoma. Pfn1 overexpression impairs tumorigenic ability of human breast cancer xenografts thus suggesting that Pfn1 could be a tumor‐suppressor protein. The objective of the present study was to determine how Pfn1 overexpression affects cell‐cycle progression of breast cancer cells. We show that Pfn1 overexpression in MDA‐MB‐231 breast cancer cells causes cell‐cycle arrest in G1 phase and dramatically reduced proliferation in culture. Pfn1 overexpression results in increased protein stability of p27kip1 (p27—a major cyclin‐dependent kinase inhibitor) and marked elevation in the overall cellular level of p27. Proliferation defect of Pfn1 overexpressers can be partly rescued by silencing p27 expression thus suggesting a critical role of p27 in Pfn1‐induced growth inhibition of MDA‐MB‐231 cells. Finally, Pfn1 overexpression was found to sensitize MDA‐MB‐231 cells to apoptosis in response to cytotoxic stimulus thus suggesting for the first time that survival of breast cancer cells can also be negatively influenced by Pfn1 upregulation. These findings may provide novel insights underlying Pfn1's tumor‐suppressive action. J. Cell. Physiol. 223:623–629, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.  相似文献   

4.
Profilin-1 (Pfn1) is an important regulator of actin polymerization that is downregulated in human breast cancer. Previous studies have shown Pfn1 has a tumor-suppressive effect on mesenchymal-like triple-negative breast cancer cells, and Pfn1-induced growth suppression is partly mediated by upregulation of cell-cycle inhibitor p27kip1 (p27). In this study, we demonstrate that Pfn1 overexpression leads to accumulation of p27 through promoting AMPK activation and AMPK-dependent phosphorylation of p27 on T198 residue, a post-translational modification that leads to increased protein stabilization of p27. This pathway is mediated by Pfn1-induced epithelial morphological reversion of mesenchymal breast cancer through cadherin-mediated restoration of adherens junctions. These findings not only elucidate a potential mechanism of how Pfn1 may inhibit proliferation of mesenchymal breast cancer cells, but also highlight a novel pathway of cadherin-mediated p27 induction and therefore cell-cycle control in cells.  相似文献   

5.
Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells.  相似文献   

6.
Profilin1 (Pfn1) is a key mediator of actin polymerization and regulates cell migration. Low expression of Pfn1 is implicated in tumorigenesis of various cancers, including breast cancer. The regulatory mechanism behind Pfn1 levels has not yet been elucidated. In the present study, we find that Pfn1 is poly-ubiquitinated in human cell lines, and a portion of poly-ubiquitinated Pfn1 is regulated in a proteasome-dependent manner. C-terminus of Hsc70-interacting protein (CHIP), a co-chaperone E3 ligase, interacts with and ubiquitinates Pfn1, targeting it for proteasome-dependent degradation. Depletion of CHIP stabilizes Pfn1, suggesting that CHIP functions as a major E3 ligase for Pfn1. Stable expression of wild-type CHIP in the breast cancer cell line MDA-MB231 yielded downregulation of Pfn1 and enhanced cell migration. Pfn1 overexpression in MDA-MB231 cells expressing wild-type CHIP suppressed the enhanced cell migration. Taken together, our results demonstrate that CHIP regulates Pfn1 levels as an E3 ligase, and possibly plays a role in cell migration and metastasis of breast cancer.  相似文献   

7.
Src family protein-tyrosine kinases, which play an important role in signal integration, have been implicated in tumorigenesis in multiple lineages, including breast cancer. We demonstrate, herein, that Src kinases regulate the phosphatidylinositol 3-kinase (PI3K) signaling cascade via altering the function of the PTEN tumor suppressor. Overexpression of activated Src protein-tyrosine kinases in PTEN-deficient breast cancer cells does not alter AKT phosphorylation, an indicator of signal transduction through the PI3K pathway. However, in the presence of functional PTEN, Src reverses the activity of PTEN, resulting in an increase in AKT phosphorylation. Activated Src reduces the ability of PTEN to dephosphorylate phosphatidylinositols in micelles and promotes AKT translocation to cellular plasma membranes but does not alter PTEN activity toward water-soluble phosphatidylinositols. Thus, Src may alter the capacity of the PTEN C2 domain to bind cellular membranes rather than directly interfering with PTEN enzymatic activity. Tyrosine phosphorylation of PTEN is increased in breast cancer cells treated with pervanadate, suggesting that PTEN contains sites for tyrosine phosphorylation. Src kinase inhibitors markedly decreased pervanadate-mediated tyrosine phosphorylation of PTEN. Further, expression of activated Src results in marked tyrosine phosphorylation of PTEN. SHP-1, a SH2 domain-containing protein-tyrosine phosphatase, selectively binds and dephosphorylates PTEN in Src transfected cells. Both Src inhibitors and SHP-1 overexpression reverse Src-induced loss of PTEN function. Coexpression of PTEN with activated Src reduces the stability of PTEN. Taken together, the data indicate that activated Src inhibits PTEN function leading to alterations in signaling through the PI3K/AKT pathway.  相似文献   

8.
旨在探究整合素αvβ3的单克隆抗体LM609在BSP不同表达水平的乳腺癌细胞中对AKT(蛋白激酶B)信号通路的影响。利用免疫细胞化学法检测BSP不同表达水平的乳腺癌细胞中整合素αvβ3的表达量。BSP基因沉默乳腺癌MDA-MB-231BO细胞,Western blotting在蛋白水平检测磷酸化AKT的表达,MTT试验和细胞划痕试验分别检测细胞增殖、迁移能力的变化。结果显示,与231BO-Scrambled细胞相比,231BO-BSP27细胞中BSP蛋白水平明显降低,抑制率达到(59.43±1.71)%;LM609分别处理两株细胞后,与对照组231BO-Scrambled细胞相比,BSP基因沉默组21BO-BSP27细胞中AKT磷酸化水平下调明显,为(33.78±1.51)%(P<0.01);231BO-BSP27细胞和对照组231BO-Scrambled中细胞的增殖和迁移能力均有不同程度的下降(P<0.05)。LM609能够抑制胞内整合素αvβ3功能的表达,进而对AKT信号通路进行调控,并影响细胞增殖和迁移的发生。  相似文献   

9.
In this study we have examined CD44 (a hyaluronan (HA) receptor) interaction with a RhoA-specific guanine nucleotide exchange factor (p115RhoGEF) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunoprecipitation and immunoblot analyses indicate that both CD44 and p115RhoGEF are expressed in MDA-MB-231 cells and that these two proteins are physically associated as a complex in vivo. The binding of HA to MDA-MB-231 cells stimulates p115RhoGEF-mediated RhoA signaling and Rho kinase (ROK) activity, which, in turn, increases serine/threonine phosphorylation of the adaptor protein, Gab-1 (Grb2-associated binder-1). Phosphorylated Gab-1 promotes PI 3-kinase recruitment to CD44v3. Subsequently, PI 3-kinase is activated (in particular, alpha, beta, gamma forms but not the delta form of the p110 catalytic subunit), AKT signaling occurs, the cytokine (macrophage-colony stimulating factor (M-CSF)) is produced, and tumor cell-specific phenotypes (e.g. tumor cell growth, survival and invasion) are up-regulated. Our results also demonstrate that HA/CD44-mediated oncogenic events (e.g. AKT activation, M-CSF production and breast tumor cell-specific phenotypes) can be effectively blocked by a PI 3-kinase inhibitor (LY294002). Finally, we have found that overexpression of a dominant-negative form of ROK (by transfection of MBA-MD-231 cells with the Rho-binding domain cDNA of ROK) not only inhibits HA/CD44-mediated RhoA-ROK activation and Gab-1 phosphorylation but also down-regulates oncogenic signaling events (e.g. Gab-1.PI 3-kinase-CD44v3 association, PI 3-kinase-mediated AKT activation, and M-CSF production) and tumor cell behaviors (e.g. cell growth, survival, and invasion). Taken together, these findings strongly suggest that CD44 interaction with p115RhoGEF and ROK plays a pivotal role in promoting Gab-1 phosphorylation leading to Gab-1.PI 3-kinase membrane localization, AKT signaling, and cytokine (M-CSF) production during HA-mediated breast cancer progression.  相似文献   

10.
Profilin1 (Pfn1) functions as a tumour suppressor against malignant phenotypes of cancer cells. A minimum level of Pfn1 is critical for the differentiation of human epithelial cells, and its lower expression correlates with the tumourigenesis of breast cancer cells and tissues. However, the molecular mechanisms underlying its anti-tumour action remain largely unknown. In this study, we found that stable expression of ectopic Pfn1 sensitized the breast cancer cell line MDA-MB-468 to apoptosis induced by staurosporine, a widely used natural apoptosis-inducing agent. Pfn1 overexpression could also up-regulate the expression of integrin α5β1, which has been shown to inhibit the transformed phenotype of cancer cells. Furthermore, the Pfn1-facilitated apoptosis induced by staurosporine was blocked in cells attached to a supplementary fibronectin substrate, which serves as a ligand of integrin α5β1. These results suggest that the insufficient fibronectin caused by the integrin α5β1 up-regulation might activate a signalling pathway leading to an increase of cellular apoptosis. Moreover, Pfn1 that primarily functions to promote local superstructure formation involving actin filaments and integrin β1 may contribute to its promotion on apoptosis. Our study indicated a previously uncharacterized role of Pfn1 in mediating staurosporine-inducing apoptosis in breast cancer cells via up-regulating integrin α5β1, and suggested a new target for breast cancer therapy.  相似文献   

11.
12.
Estrogen receptors (ERs) mediate most of the biological effects of estrogen in mammary and uterine epithelial cells by binding to estrogen response elements in the promoter region of target genes or through protein-protein interactions. Anti-estrogens such as tamoxifen inhibit the growth of ER-positive breast cancers by reducing the expression of estrogen-regulated genes. However, anti-estrogen-resistant growth of ER-positive tumors remains a significant clinical problem. Here we show that phosphatidylinositol (PI) 3-kinase and AKT activate ERalpha in the absence of estrogen. Although PI 3-kinase increased the activity of both estrogen-independent activation function 1 (AF-1) and estrogen-dependent activation function 2 (AF-2) of ERalpha, AKT increased the activity of only AF-1. PTEN and a catalytically inactive AKT decreased PI 3-kinase-induced AF-1 activity, suggesting that PI 3-kinase utilizes AKT-dependent and AKT-independent pathways in activating ERalpha. The consensus AKT phosphorylation site Ser-167 of ERalpha is required for phosphorylation and activation by AKT. In addition, LY294002, a specific inhibitor of the PI 3-kinase/AKT pathway, reduced phosphorylation of ERalpha in vivo. Moreover, AKT overexpression led to up-regulation of estrogen-regulated pS2 gene, Bcl-2, and macrophage inhibitory cytokine 1. We demonstrate that AKT protects breast cancer cells from tamoxifen-induced apoptosis. Taken together, these results define a molecular link between activation of the PI 3-kinase/AKT survival pathways, hormone-independent activation of ERalpha, and inhibition of tamoxifen-induced apoptotic regression.  相似文献   

13.
14.
cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-β. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.  相似文献   

15.
Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and suggest that not all carcinomas will be sensitive to therapies targeting mitochondrial Ca2+ uptake mechanisms.  相似文献   

16.
We previously showed that silencing profilin‐1 (Pfn1) expression increases breast cancer cell motility, but the underlying mechanisms have not been explored. Herein, we demonstrate that loss of Pfn1 expression leads to slower but more stable lamellipodial protrusion thereby enhancing the net protrusion rate and the overall motility of MDA‐MB‐231 breast cancer cells. Interestingly, MDA‐MB‐231 cells showed dramatic enrichment of VASP at their leading edge when Pfn1 expression was downregulated and this observation was also reproducible in other cell types including human mammary epithelial cells and vascular endothelial cells. We further demonstrate that Pfn1 downregulation results in a hyper‐motile phenotype of MDA‐MB‐231 cells in an Ena/VASP‐dependent mechanism. Pfn1‐depleted cells display a strong colocalization of VASP with lamellipodin (Lpd—a PI(3,4)P2‐binding protein that has been previously implicated in lamellipodial targeting of Ena/VASP) at the leading edge. Finally, inhibition of PI3‐kinase (important for generation of PI(3,4)P2) delocalizes VASP from the leading edge. This observation is consistent with a possible involvement of Lpd in enhanced membrane recruitment of VASP that results from loss of Pfn1 expression. Our findings for the first time highlight a possible mechanism of how reduced expression of a pro‐migratory molecule like Pfn1 could actually promote motility of breast cancer cells. J. Cell. Physiol. 219: 354–364, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
The inhibitor of apoptosis proteins (IAP) are closely correlated with proliferation, apoptosis, motility, and metastasis. Livin is the most recently identified IAP, and its role in breast progression remains unknown. In our study, analyses of 50 patients with breast cancer revealed that the positive expression rate of Livin was higher in breast cancer tissues (62%) relative to that in adjacent (35%) and normal tissues (25%). Livin expression in breast cancer correlated with the clinical stage and axillary lymph node metastasis and could be used as a prognostic marker. Our in vitro experiment revealed that Livin was highly expressed in high-invasive MDA-MB-231 cells as compared to low-invasive cells (MCF-7). Suppression of Livin by short-hairpin RNA reduced the Livin expression of MDA-MB-231 cells and subsequently inhibited tumor cell growth, proliferation, and colony formation and induced tumor cell apoptosis, motility, migration, and invasion. Overexpression of Livin in MCF7 cells resulted in increased migration and invasion capabilities of the cells without affecting proliferation and apoptosis. In addition, epithelial–mesenchymal transition (EMT) was induced by Livin expression in breast cancer cell lines. The high level of phosphorylated AKT in MDA-MB-231 cells was suppressed by Livin knockdown. Further, Livin-induced migration and invasion could be abolished by either the application of the phosphoinositide-3-kinase inhibitor LY294002 or knockdown of AKT expression using small-interfering RNA. In conclusion, Livin serves as an independent prognostic indicator for breast cancer. Livin expression promotes breast cancer metastasis through the activation of AKT signaling and induction of EMT in breast cancer cells both in vitro and in vivo.  相似文献   

18.
Increased tyrosine phosphorylation has been correlated with human cancer, including breast cancer. In general, the activation of tyrosine kinases (TKs) can be antagonized by the action of protein-tyrosine phosphatases (PTPs). However, in some cases PTPs can potentiate the activation of TKs. In this study, we have investigated the functional role of PTPε in human breast cancer cell lines. We found the up-regulation and activation of receptor PTPε (RPTPε) in MCF-7 cells and MDA-MB-231 upon PMA, FGF, and serum stimulation, which depended on EGFR and ERK1/2 activity. Diminishing the expression of PTPε in human breast cancer cells abolished ERK1/2 and AKT activation, and decreased the viability and anchorage-independent growth of the cells. Conversely, stable MCF-7 cell lines expressing inducible high levels of ectopic PTPε displayed higher activation of ERK1/2 and anchorage-independent growth. Our results demonstrate that expression of PTPε is up-regulated and activated in breast cancer cell lines, through EGFR, by sustained activation of the ERK1/2 pathway, generating a positive feedback regulatory loop required for survival of human breast cancer cells.  相似文献   

19.
The present study shows that nuclear factor erythroid 2-related factor 2 (NRF2) and miR-29b-1-5p are two opposite forces which could regulate the fate of MDA-MB-231 cells, the most studied triple-negative breast cancer (TNBC) cell line. We show that NRF2 activation stimulates cell growth and markedly reduces reactive oxygen species (ROS) generation, whereas miR-29b-1-5p overexpression increases ROS generation and reduces cell proliferation. Moreover, NRF2 downregulates miR-29b-1-5p expression, whereas miR-29b-1-5p overexpression decreases p-AKT and p-NRF2. Furthermore, miR-29b-1-5p overexpression induces both inhibition of DNA N-methyltransferases (DNMT1, DNMT3A, and DNMT3B) expression and re-expression of HIN1, RASSF1A and CCND2. Conversely, NRF2 activation induces opposite effects. We also show that parthenolide, a naturally occurring small molecule, induces the expression of miR-29b-1-5p which could suppress NRF2 activation via AKT inhibition. Overall, this study uncovers a novel NRF2/miR-29b-1-5p/AKT regulatory loop that can regulate the fate (life/death) of MDA-MB-231 cells and suggests this loop as therapeutic target for TNBC.  相似文献   

20.
Benzyl isothiocyanate (BITC), a dietary cancer chemopreventive agent, causes apoptosis in MDA-MB-231 and MCF-7 human breast cancer cells, but the mechanism of cell death is not fully understood. We now demonstrate that the BITC-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species (ROS) due to inhibition of complex III of the mitochondrial respiratory chain. The BITC-induced ROS production and apoptosis were significantly inhibited by overexpression of catalase and Cu,Zn-superoxide dismutase and pharmacological inhibition of the mitochondrial respiratory chain. The mitochondrial DNA-deficient Rho-0 variant of MDA-MB-231 cells was nearly completely resistant to BITC-mediated ROS generation and apoptosis. The Rho-0 MDA-MB-231 cells also resisted BITC-mediated mitochondrial translocation (activation) of Bax. Biochemical assays revealed inhibition of complex III activity in BITC-treated MDA-MB-231 cells as early as at 1 h of treatment. The BITC treatment caused activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which function upstream of Bax activation in apoptotic response to various stimuli. Pharmacological inhibition of both JNK and p38 MAPK conferred partial yet significant protection against BITC-induced apoptosis. Activation of JNK and p38 MAPK resulting from BITC exposure was abolished by overexpression of catalase. The BITC-mediated conformational change of Bax was markedly suppressed by ectopic expression of catalytically inactive mutant of JNK kinase 2 (JNKK2(AA)). Interestingly, a normal human mammary epithelial cell line was resistant to BITC-mediated ROS generation, JNK/p38 MAPK activation, and apoptosis. In conclusion, the present study indicates that the BITC-induced apoptosis in human breast cancer cells is initiated by mitochondria-derived ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号