首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypobaric hypoxia induces oxidative stress in rat brain   总被引:7,自引:0,他引:7  
High altitude exposure results in decreased partial pressure of oxygen and an increased formation of reactive oxygen and nitrogen species (RONS), which causes oxidative damage to lipids, proteins and DNA. Exposure to high altitude appears to decrease the activity and effectiveness of antioxidant enzyme system. The antioxidant system is very less in brain tissue and is very much susceptible to hypoxic stress. The aim of the present study was to investigate the time dependent and region specific changes in cortex, hippocampus and striatum on oxidative stress markers on chronic exposure to hypobaric hypoxia. The rats were exposed to simulated high altitude equivalent to 6100 m in animal decompression chamber for 3 and 7 days. Results indicate an increase in oxidative stress as seen by increase in free radical production, nitric oxide level, lipid peroxidation and lactate dehydrogenase levels. The magnitude of increase in oxidative stress was more in 7 days exposure group as compared to 3 days exposure group. The antioxidant defence system such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) levels were significantly decreased in all the three regions. The observation suggests that the hippocampus is more susceptible to hypoxia than the cortex and striatum. It may be concluded that hypoxia differentially affects the antioxidant status in the cortex, hippocampus and striatum.  相似文献   

2.
This study was performed to explore changes in gene expression as a consequence of exercise training at two levels of intensity under normoxic and normobaric hypoxic conditions (corresponding to an altitude of 3,850 m). Four groups of human subjects trained five times a week for a total of 6 wk on a bicycle ergometer. Muscle biopsies were taken, and performance tests were carried out before and after the training period. Similar increases in maximal O(2) uptake (8.3-13.1%) and maximal power output (11.4-20.8%) were found in all groups. RT-PCR revealed elevated mRNA concentrations of the alpha-subunit of hypoxia-inducible factor 1 (HIF-1) after both high- (+82.4%) and low (+78.4%)-intensity training under hypoxic conditions. The mRNA of HIF-1alpha(736), a splice variant of HIF-1alpha newly detected in human skeletal muscle, was shown to be changed in a similar pattern as HIF-1alpha. Increased mRNA contents of myoglobin (+72.2%) and vascular endothelial growth factor (+52.4%) were evoked only after high-intensity training in hypoxia. Augmented mRNA levels of oxidative enzymes, phosphofructokinase, and heat shock protein 70 were found after high-intensity training under both hypoxic and normoxic conditions. Our findings suggest that HIF-1 is specifically involved in the regulation of muscle adaptations after hypoxia training. Fine-tuning of the training response is recognized at the molecular level, and with less sensitivity also at the structural level, but not at global functional responses like maximal O(2) uptake or maximal power output.  相似文献   

3.
4.
P M?ller  S Loft  C Lundby  N V Olsen 《FASEB journal》2001,15(7):1181-1186
The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage. Urinary excretion of 8-oxodG increased during the first day in altitude hypoxia, and there were more endonuclease III-sensitive sites on day 3 at high altitude. The subjects had more DNA strand breaks in altitude hypoxia than at sea level. The level of DNA strand breaks further increased immediately after exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity to withstand oxidative stress produced by exhaustive exercise.  相似文献   

5.
Hypoxia impairs the muscle fibre-type shift from fast-to-slow during post-natal development; however, this adaptation could be a consequence of the reduced voluntary physical activity associated with hypoxia exposure rather than the result of hypoxia per se. Moreover, muscle oxidative capacity could be reduced in hypoxia, particularly when hypoxia is combined with additional stress. Here, we used a model of muscle regeneration to mimic the fast-to-slow fibre-type conversion observed during post-natal development. We hypothesised that hypoxia would impair the recovery of the myosin heavy chain (MHC) profile and oxidative capacity during muscle regeneration. To test this hypothesis, the soleus muscle of female rats was injured by notexin and allowed to recover for 3, 7, 14 and 28 days under normoxia or hypobaric hypoxia (5,500 m altitude) conditions. Ambient hypoxia did not impair the recovery of the slow MHC profile during muscle regeneration. However, hypoxia moderately decreased the oxidative capacity (assessed from the activity of citrate synthase) of intact muscle and delayed its recovery in regenerated muscle. Hypoxia transiently increased in both regenerated and intact muscles the content of phosphorylated AMPK and Pgc-1α mRNA, two regulators involved in mitochondrial biogenesis, while it transiently increased in intact muscle the mRNA level of the mitophagic factor BNIP3. In conclusion, hypoxia does not act to impair the fast-to-slow MHC isoform transition during regeneration. Hypoxia alters the oxidative capacity of intact muscle and delays its recovery in regenerated muscle; however, this adaptation to hypoxia was independent of the studied regulators of mitochondrial turn-over.  相似文献   

6.
Hypobaric hypoxia, characteristic of high altitude is known to increase the formation of reactive oxygen and nitrogen species (RONS), and decrease effectiveness of antioxidant enzymes. RONS are involved and may even play a causative role in high altitude related ailments. Brain is highly susceptible to hypoxic stress and is involved in physiological responses that follow. Exposure of rats to hypobaric hypoxia (7619 m) resulted in increased oxidation of lipids and proteins due to increased RONS and decreased reduced to oxidized glutathione (GSH/GSSG) ratio. Further, there was a significant increase in superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) levels. Increase in heme oxygenase 1 (HO-1) and heat shock protein 70 (HSP70) was also noticed along with metallothionein (MT) II and III. Administration of cobalt appreciably attenuated the RONS generation, oxidation of lipids and proteins and maintained GSH/GSSH ratio similar to that of control cells via induction of HO-1 and MT offering efficient neuroprotection. It can be concluded that cobalt reduces hypoxia oxidative stress by maintaining higher cellular HO-1 and MT levels via hypoxia inducible factor 1alpha (HIF-1alpha) signaling mechanisms. These findings provide a basis for possible use of cobalt for prevention of hypoxia-induced oxidative stress.  相似文献   

7.
Operation Everest II: adaptations in human skeletal muscle   总被引:3,自引:0,他引:3  
Adaptations in skeletal muscle in response to progressive hypobaria were investigated in eight male subjects [maximal O2 uptake = 51.2 +/- 3.0 (SE) ml.kg-1.min-1] over 40 days of progressive decompression to the stimulated altitude of the summit of Mt. Everest. Samples of the vastus lateralis muscle extracted before decompression (SL-1), at 380 and 282 Torr, and on return to sea level (SL-2) indicated that maximal activities of enzymes representative of the citric acid cycle, beta-oxidation, glycogenolysis, glycolysis, glucose phosphorylation, and high-energy phosphate transfer were unchanged (P greater than 0.05) at 380 and 282 Torr over initial SL-1 values. After exposure to 282 Torr, however, representing an additional period of approximately 7 days, reductions (P less than 0.05) were noted in succinic dehydrogenase (21%), citrate synthetase (37%), and hexokinase (53%) between SL-2 and 380 Torr. No changes were found in the other enzymes. Capillarization as measured by the number of capillaries per cross-sectional area (CC/FA) was increased (P less than 0.05) in both type I (0.94 +/- 0.8 vs. 1.16 +/- 0.05) and type II (0.84 +/- 0.07 vs. 1.05 +/- 0.08) fibers between SL-1 and SL-2. This increase was mediated by a reduction in fiber area. No changes were found in fiber-type distribution (type I vs. type II). These findings do not support the hypothesis, at least in humans, that, at the level of the muscle cell, extreme hypobaric hypoxia elicits adaptations directed toward maximizing oxidative function.  相似文献   

8.
Tissue hypoxia and ischemia-reperfusion pose a dangerous situation for oxidative stress. However, diving mammals and birds show pronounced resistance to oxidative injury under such conditions, which are a consequence of selective vasoconstriction during a dive. As the function of Hypoxia-Inducible Factor-1alpha (HIF-1alpha) in protection against and adaptation to hypoxia has been recognized in terrestrial animals, we have investigated the genomics and expression of this protein in ringed seal (Phoca hispida) in order to determine if it may play a protective role in this diving mammal. PCR studies using primers based on sequences from mouse HIF-1alpha exons 3, 4, 5, 6, 9, 10, 11, 12 and 15 showed that DNA from seal lung generated PCR products similar to those from mouse DNA. These studies have established that a putative HIF-1alpha gene exists in the seal genome that appears to have a similar but not identical sequence to the mouse gene. Seal lung and skeletal muscle tissues showed the highest relative levels of HIF-1alpha protein expression, with heart muscle showing significantly lower levels, and levels of HIF-1beta protein expression paralleled this situation. Analysis of oxidized cellular protein levels indicated that seal lung and heart muscle had the lowest levels of oxidized proteins. Thus, as seal lung tissue had the highest level of HIF-1alpha protein expression and the second lowest level of protein oxidation, this suggests that HIF-1alpha expression may have an important protective effect in this tissue in diving mammals. Our results support the hypothesis that HIF-1alpha expression is dependent on both tissue-specific energy requirements and adequate metabolic supply-to-demand ratio. Combined, the evidence available suggests that diving mammals have an overall anticipatory response to avoid the ill effects of dive-associated ischemia-reperfusion which may involve the HIF-1 system.  相似文献   

9.
Hypoxia-inducible factor (HIF)-α subunits (HIF-1α,HIF-2α and HIF-3α),which play a pivotalrole during the development of hypoxia-induced pulmonary hypertension (HPH),are regulated through post-U'anslational hydroxylation by their three prolyl hydroxylase domain-containing proteins (PHD 1,PHD2 and PHD3).PHDs could also be regulated by HIF.But differential and reciprocal regulation between HIF-α and PHDs duringthe development of HPH remains unclear.To investigate this problem,a rat HPH model was established.Meanpulmonary arterial pressure increased significantly after 7 d of hypoxia.Pulmonary artery remodeling indexand right ventricular hypertrophy became evident after 14 d of hypoxia.HIF-1α and HIF-2α mRNA increasedslightly after 7 d of hypoxia,but HIF-3α increased significantly after 3 d of hypoxia.The protein expressionlevels of all three HIF-α were markedly upregulated after exposure to hypoxia.PHD2 mRNA and proteinexpression levels were upregulated after 3 d of hypoxia;PHD 1 protein declined after 14 d of hypoxia withoutsignificant mRNA changes.PHD3 mRNA and protein were markedly upregulated after 3 d of hypoxia,then themRNA remained at a high level,but the protein declined after 14 d of hypoxia.In hypoxic animals,HIF-lotproteins negatively correlated with PHD2 proteins,whereas HIF-2α and HIF-3α proteins showed negativecorrelations with PHD3 and PHD 1 proteins,respectively.All three HIF-α proteins were positively correlatedwith PHD2 and PHD3 mRNA.In the present study,HIF-α subunits and PHDs showed differential andreciprocal regulation,and this might play a key pathogenesis role in hypoxia-induced pulmonary hypertension.  相似文献   

10.
11.
Molecular events that control skeletal muscle injury and regeneration are poorly understood. However, inflammation associated with oxidative stress is considered a key player in modulating this process. To understand the consequences of oxidative stress associated with muscle injury, inflammation, and regeneration, hind-limb muscles of C57Bl/6J mice were studied after injection of cardiotoxin (CT). Within 1 day post-CT injection, polymorphonuclear neutrophilic leukocyte accumulation was extensive. Compared to baseline, tissue myeloperoxidase (MPO) activity was elevated eight- and fivefold at 1 and 7 days post-CT, respectively. Ubiquitinylated protein was elevated 1 day postinjury and returned to baseline by 21 days. Cysteine residues of creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were irreversibly oxidized within 1 day post-CT injection and were associated with protein conformational changes that fully recovered after 21 days. Importantly, protein structural alterations occurred in conjunction with significant decreases in CK activity at 1, 3, and 7 days post-CT injury. Interestingly, elevations in tissue MPO activity paralleled the time course of conformational changes in CK and GAPDH. In combination, these results demonstrate that muscle proteins in vivo are structurally and functionally altered via the generation of reactive oxygen species produced during inflammatory events after muscle injury and preceding muscle regeneration.  相似文献   

12.
We previously communicated that long-term hypoxia (LTH) resulted in a selective reduction in plasma epinephrine following acute stress in fetal sheep. The present study tested the hypothesis that LTH selectively reduces adrenomedullary expression of phenylethanolamine-N-methyltransferase (PNMT), the rate-limiting enzyme for epinephrine synthesis. We also examined the effect of LTH on adrenomedullary nicotinic, muscarinic, and glucocorticoid receptor (GR) expression. Ewes were maintained at high altitude (3,820 m) from 30 to 138 days gestation (dGA); adrenomedullary tissue was collected from LTH and age-matched, normoxic control fetuses at 139-141 dGA. Contrary to our hypothesis, in addition to PNMT, adrenomedullary expression (mRNA, protein) of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) were reduced in the LTH fetus. Immunocytochemistry indicated that TH and DBH expression was lower throughout the medulla, while PNMT appeared to reflect a reduction in PNMT-expressing cells. Nicotinic receptor alpha 1, 2, 3, 5, 6, 7, beta 1, 2, and 4 subunits were expressed in the medulla of LTH and control fetuses. Messenger RNA for alpha 1 and 7 and beta 1 and 2 subunits was lower in LTH fetuses. Muscarinic receptors M1, M2, and M3 as well as the GR were also expressed, and no differences were noted between groups. In summary, LTH in fetal sheep has a profound effect on expression of key enzymes mediating adrenomedullary catecholamine synthesis. Further, LTH impacts nicotinic receptor subunit expression potentially altering cholinergic neurotransmission within the medulla. These findings have important implications regarding fetal cardiovascular and metabolic responses to stress in the LTH fetus.  相似文献   

13.
Experiments were conducted on male rats, 250-300 g in weight. Adaptation to high altitude hypoxia was created by placing the animals daily for 5 hours, into an altitude chamber, at an "altitude" of 6000 m. The degree of hypertrophy of the right ventricle and its RNA content was studied after 20 days of adaptation, as well as 2, 10, 20 and 40 days after cessation of hypoxia. Twenty days after the beginning of adaptation the muscle mass of the right ventricle the RNA concentration and amount in it was found to increase considerably. After cessation of hypoxia half of the acquired increase in the ventricle muscle mass was lost in 10 days, and half of the acquired increase in the RNA--as soon as in 2 days. Forty days after cessation of hypoxia the right ventricle mass and its RNA content in the adapted animals did not differ from the same indices in control rats.  相似文献   

14.
Objectives: To investigate the effects of multiple cryotherapy applications after muscle injury on markers of oxidative stress.

Methods: Following cryolesion-induced skeletal muscle injury in rats, ice was applied at the injured site for 30?minutes, three times per day, on the day of injury, and for 2 days after injury. To determine the effect of the cryotherapy treatment on markers of oxidative stress, biochemical analyses were performed 3, 7, and 14 days after injury.

Results: Compared with non-treated animals, cryotherapy reduced dichlorofluorescein at 7 and 14 days post-injury and thiobarbituric acid reactive substances levels at 3 and 7 days post-injury (P?P?>?0.05), whereas non-treated groups demonstrated lower levels than the control group (P?P?P?=?0.92).

Discussion: Cryotherapy reduced the production of reactive oxygen species after muscle injury, resulting in an attenuated response of the antioxidant system. These findings suggest that using multiple cryotherapy applications is efficient to reduce oxidative stress.  相似文献   

15.
Mitochondrial myopathy patients (MMPs) have impaired oxidative phosphorylation and exercise intolerance. Endurance training of MMPs improves exercise tolerance, but also increases mutational load. To assess the regulation of mitochondrial content in MMPs, we measured proteins involved in 1) biogenesis, 2) oxidative stress, and 3) apoptosis in MMPs and healthy controls (HCs) both before and after endurance training. Before training, MMPs had a greater mitochondrial content, along with a 1.4-fold (P < 0.05) higher expression of the biogenesis regulator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). The DNA repair enzyme 8-oxoguanine DNA glycolase-1 (OGG-1), the antioxidant manganese superoxide dismutase (MnSOD), and the apoptotic proteins AIF and Bcl-2 were higher in MMPs compared with HCs. Aconitase, an enzyme sensitive to oxidative stress, was 52% lower (P < 0.05) in MMPs when calculated based on an estimate of mitochondrial volume and oxidative stress-induced protein modifications tended to be higher in MMPs compared with HCs. Endurance training (ET) induced increases in mitochondrial content in both HC subjects and MMPs, but there was no effect of training on the regulatory proteins Tfam or PGC-1alpha. In MMPs, training induced a selective reduction of OGG-1, an increase in MnSOD, and a reduction in aconitase activity. Thus, before training, MMPs exhibited an adaptive response of nuclear proteins indicative of a compensatory increase in mitochondrial content. Following training, several parallel adaptations occurred in MMPs and HCs, which may contribute to previously observed functional improvements of exercise in MMPs. However, our results indicate that muscle from MMPs may be exposed to greater levels of oxidative stress during the course of training. Further investigation is required to evaluate the long-term benefits of endurance training as a therapeutic intervention for mitochondrial myopathy patients.  相似文献   

16.
Groups of sexually-naive male NFR/N mice were maintained at sea level or exposed to simulated altitudes of 18 000 ft (5486 m) or 22 000 ft (6705 m) for 1, 3, 7, 14 or 28 days. Plasma LH concentrations were slightly but not significantly depressed after 1 day of hypoxia. Plasma FSH values were reduced (P < 0.05) after 1, 7, 14 and 28 days of exposure to 22 000 ft when compared to the values in the other groups. Prolactin concentrations fluctuated considerably, but were not uniformly affected by high altitude exposure. Exposure to 18 000 ft resulted in an elevation of plasma corticosterone concentration (P < 0.05) for 3 days, which was followed by a decline to control group values, whereas at 22 000 ft corticosterone levels remained elevated. These findings indicate that plasma LH values are transiently reduced during the initial 24 h of exposure to high altitude and that plasma FSH concentrations are depressed in a sustained manner during severe hypoxia.  相似文献   

17.
Environmental stress at high altitude affects the myocardium at the physiological and molecular level. Characterized by hypobaric hypoxia and low temperatures, the cumulative impact of these stressors on the protein folding homeostasis in the heart is yet unexplored. The present study evaluates the collective effect of cold and hypoxia on the myocardial protein oxidation and activation of the endoplasmic reticulum (ER) stress response. Adult rats were exposed to either a singular acute stress of cold (10 °C; C), hypobaric hypoxia (7620 m; H) or simultaneously to both cold and hypobaric hypoxia (CH) for 6 h. Hypoxic stress amplified the free radical generation in H and CH groups, leading to enhanced HIF-1α expression. Coupled to cold stress, reduced oxygen availability caused substantial protein oxidative modifications, as well as cardiac tissue injury and matrix remodeling, evident in the histological staining. Presence of oxidized proteins caused a significant upregulation in expression of ER chaperones GRP78 and PDI in the cold hypoxia exposed animals. Enhanced proteolytic activity signaled the removal of misfolded proteins. Linked intricately to cellular stress response, cell survival kinases were expressed higher in CH group; however apoptotic CHOP (C/EBP homologous protein) expression remained unaltered. Administration of ER stress inducer, tunicamycin along with cold hypoxic stress, caused a discernible increase in protein oxidation and GRP78 expression, along with a significant elevation in proteasome and apoptotic activity. Highlighting the significance of a synergistic, rather than individual, effect of low oxygen and temperature on the protein folding machinery, our study provides evidence for the activation of ER stress response in the myocardium under acute high altitude stress.  相似文献   

18.
To determine whether the working muscle is able to sustain ATP homeostasis during a hypoxic insult and the mechanisms associated with energy metabolic adaptations during the acclimatization process, seven male subjects [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg] were given a prolonged exercise challenge (45 min) at sea level (SL), within 4 h after ascent to an altitude of 4,300 m (acute hypoxia, AH), and after 3 wk of sustained residence at 4,300 m (chronic hypoxia, CH). The prolonged cycle test conducted at the same absolute intensity and representing 51 +/- 1% of SL maximal aerobic power (VO2 max) and between 64 +/- 2 (AH) and 66 +/- 1% (CH) at altitude was performed without a reduction in ATP concentration in the working vastus lateralis regardless of condition. Compared with rest, exercise performed during AH resulted in a greater increase (P < 0.05) in muscle lactate concentration (5.11 +/- 0.68 to 22.3 +/- 6.1 mmol/kg dry wt) than exercise performed either at SL (5.88 +/- 0.85 to 11.5 +/- 3.1) or CH (5.99 +/- 0.88 to 12.4 +/- 2.1). These differences in lactate concentration have been shown to reflect differences in arterial lactate concentration and glycolysis (Brooks et al. J. Appl. Physiol. 71: 333-341, 1991). The reduction in glycolysis at least between AH and CH appears to be accompanied by a tighter metabolic control. During CH, free ADP was lower and the ATP-to-free ADP ratio was increased (P < 0.05) compared with AH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In this study the stress protein response to unaccustomed maximal eccentric exercise in humans was investigated. Eleven healthy males performed 300 maximal eccentric actions with the quadriceps muscle. Biopsies from vastus lateralis were collected at 30 min and 4, 8, 24, 96, and 168 h after exercise. Cellular regulation and localization of heat shock protein (HSP) 27, alpha B-crystallin, and HSP70 were analyzed by immunohistochemistry, ELISA technique, and Western blotting. Additionally, mRNA levels of HSP27, alpha B-crystallin, and HSP70 were quantified by Northern blotting. After exercise (30 min), 81 +/- 8% of the myofibers showed strong HSP27 staining (P < 0.01) that gradually decreased during the following week. alpha B-Crystallin mimicked the changes observed in HSP27. After exercise (30 min), the ELISA analysis showed a 49 +/- 13% reduction of the HSP27 level in the cytosolic fraction (P < 0.01), whereas Western blotting revealed a 15-fold increase of the HSP27 level in the myofibrillar fraction (P < 0.01). The cytosolic HSP70 level increased to 203 +/- 37% of the control level 24 h after exercise (P < 0.05). After 4 days, myofibrillar-bound HSP70 had increased approximately 10-fold (P < 0.01) and was accompanied by strong staining on cross sections. mRNA levels of HSP27, alpha B-crystallin, and HSP70 were all elevated the first day after exercise (P < 0.01); HSP70 mRNA showed the largest increase (20-fold at 8 h). HSP27 and alpha B-crystallin seemed to respond immediately to maximal eccentric exercise by binding to cytoskeletal/myofibrillar proteins, probably to function as stabilizers of disrupted myofibrillar structures. Later, mRNA and total HSP protein levels, especially HSP70, increased, indicating that HSPs play a role in skeletal muscle recovery and remodeling/adaptation processes to high-force exercise.  相似文献   

20.
Although hypoxia tolerance in heterothermic mammals is well established, it is unclear whether the adaptive significance stems from hypoxia or other cellular challenge associated with euthermy, hibernation, or arousal. In the present study, blood gases, hemoglobin O2 saturation (S(O2), and indexes of cellular and physiological stress were measured during hibernation and euthermy and after arousal thermogenesis. Results show that arterial O2 tension (Pa(O2)) and S(O2) are severely diminished during arousal and that hypoxia-inducible factor (HIF)-1alpha accumulates in brain. Despite evidence of hypoxia, neither cellular nor oxidative stress, as indicated by inducible nitric oxide synthase (iNOS) levels and oxidative modification of biomolecules, was observed during late arousal from hibernation. Compared with rats, hibernating Arctic ground squirrels (Spermophilus parryii) are well oxygenated with no evidence of cellular stress, inflammatory response, neuronal pathology, or oxidative modification following the period of high metabolic demand necessary for arousal. In contrast, euthermic Arctic ground squirrels experience mild, chronic hypoxia with low S(O2) and accumulation of HIF-1alpha and iNOS and demonstrate the greatest degree of cellular stress in brain. These results suggest that Arctic ground squirrels experience and tolerate endogenous hypoxia during euthermy and arousal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号