首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection and monitoring of peptide-specific cytotoxic T lymphocyte (CTL) precursors is essential for successful peptide-based immunotherapy against cancers. In contrast to the development of effective methods of detecting antigen-specific CTL, such as ELISpot and HLA-class I tetramer assay, stimulation with peptide-pulsed antigen-presenting cells (APC) has for some time been conventionally employed to induce peptide-specific CTL from peripheral blood mononuclear cells (PBMC). This culture protocol, however, needs a substantial number of PBMC to test the reactivity against a panel of peptides. In the present study, we established a simple culture protocol which has no need of additional APC. Addition of a corresponding peptide every 3 days was found to induce not only Epstein-Barr virus (EBV)-specific CTL from healthy donors, but also tumor antigen-derived peptide-specific CTL from cancer patients. A 10-ml blood sample was almost sufficient to test the presence of CTL precursors against 20 different peptides in triplicate assays. Overall, this culture protocol can be useful in detecting and monitoring peptide-specific CTL precursors in the circulation in peptide-based immunotherapy against cancer.  相似文献   

2.
CD8(+) cytotoxic T-lymphocytes (CTLs) have been proven, in multiple animal models, to be the most powerful antiviral and antitumor components of the immune system. We have developed a protocol to activate and expand tumor and virus peptide-specific CD8(+) T-lymphocytes from the peripheral blood of healthy, human trophic leukemia virus-1 (HTLV-1) seronegative human leucocyte antigen (HLA)-A*0201 individuals. A combination of density-based separation and culture conditions was employed to isolate dendritic cells (DCs), which are the most potent antigen-presenting cells (APCs), and T-lymphocytes. The DCs were pulsed with HLA-A*0201 binding peptides and cultured with autologous T-lymphocytes to generate peptide-specific CTLs. The CTLs were generated against a nine-amino-acid peptide from the Tax protein of HTLV-1. The CTLs were expanded according to a restimulation schedule employing peptide-pulsed autologous monocytes and low-dose interleukin-2 (IL-2) to numbers in excess of 100 x 10(6) cells following 5 weeks of culture. Expanded cells contained primarily CD3(+) T-cells, of which CD8(+) T-lymphocytes constituted greater than two-thirds of the cell population. Obtained CTLs exhibited potent antigen-specific lysis of peptide-pulsed target cells in a dose-dependent fashion in in vitro (51)Cr release cytotoxicity assay. This antigen-specific killing was shown to be HLA class I restricted and mediated by CD8(+) T-lymphocytes. Since the T-lymphocytes were obtained from HTLV-1 seronegative donors, the generation of peptide-specific CTLs represents reliable and reproducible elicitation of a primary immune response in vitro against naive antigens and subsequent expansion of generated CTLs for adoptive immunotherapy. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Abstract Background aims. Interest in natural killer (NK) cell-based immunotherapy has resurged since new protocols for the purification and expansion of large numbers of clinical-grade cells have become available. Methods. We have successfully adapted a previously described NK expansion method that uses K562 cells expressing interleukin (IL)-15 and 4-1 BB Ligand (BBL) (K562-mb15-41BBL) to grow NK cells in novel gas-permeable static cell culture flasks (G-Rex). Results. Using this system we produced up to 19 × 10(9) functional NK cells from unseparated apheresis products, starting with 15 × 10(7) CD3(-) CD56 (+) NK cells, within 8-10 days of culture. The G-Rex yielded a higher fold expansion of NK cells than conventional gas-permeable bags and required no cell manipulation or feeding during the culture period. We also showed that K562-mb15-41BBL cells up-regulated surface HLA class I antigen expression upon stimulation with the supernatants from NK cultures and stimulated alloreactive CD8 (+) T cells within the NK cultures. However, these CD3 (+) T cells could be removed successfully using the CliniMACS system. We describe our optimized NK cell cryopreservation method and show that the NK cells are viable and functional even after 12 months of cryopreservation. Conclusions. We have successfully developed a static culture protocol for large-scale expansion of NK cells in the gas permeable G-Rex system under good manufacturing practice (GMP) conditions. This strategy is currently being used to produce NK cells for cancer immunotherapy.  相似文献   

4.
Sustained Ag expression by human dendritic cells (DCs) is an attractive means of optimizing Ag presentation for stimulating durable cellular immunity. To establish proof of principle, we used Langerhans cell (LC) progeny of retrovirally transduced CD34(+) hemopoietic progenitor cells to stimulate responses against the HLA-A*0201-restricted influenza matrix peptide (fluMP). Retroviral transduction of CD34(+) hemopoietic progenitor cells, during pre-expansion by thrombopoietin, c-kit ligand, and FLT-3 ligand, on recombinant fibronectin, but in the absence of FCS, resulted in gene expression by 20-30% of the LCs. Expression persisted at least 28 days, with little decline (<30%) over that time. Retroviral transduction did not alter the phenotype or potent immunogenicity of normal mature DCs. FluMP-transduced LCs stimulated a 130-fold expansion of T cells reactive with HLA-A*0201-fluMP tetramers, even at LC:T cell ratios of 1:100-150 and lower, whereas fluMP-pulsed LCs stimulated only a 30-fold expansion. FluMP-transduced LCs also stimulated higher IFN-gamma secretion (100-123 spot-forming cells/10(5) CD8(+) T cells) than did fluMP-pulsed LCs (10-91 spot-forming cells/10(5) CD8(+) T cells). CD8(+) T cells stimulated by transduced LCs did not react preferentially with retrovirally transduced targets, indicating that the responses targeted only the immunizing influenza and not the retroviral vector Ags, even though these could have provided nonspecific helper epitopes presented by the transduced LCs. These data demonstrate that gene-transduced LCs maintain the activated phenotype as well potent immunogenicity typical of mature DCs. LCs genetically modified to express fluMP are also more potent stimulators of Ag-specific CD8(+) T cell responses than are peptide-pulsed LCs.  相似文献   

5.
MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 are expressed in a significant proportion of primary and metastatic tumors of various histological types and are targets of tumor Ag-specific CTL. Individual MAGE-A expression varies from one tumor type to the other but, overall, the large majority of tumors expresses at least one MAGE-A Ag. Therefore, targeting epitopes shared by all MAGE-A Ags would be of interest in immunotherapy against a broad spectrum of cancers. In the present study, we describe a heteroclitic MAGE-A peptide (p248V9) that induces CTL in vivo in HLA-A*0201 transgenic HHD mice and in vitro in healthy donors. These CTL are able to recognize two low HLA-A*0201 affinity peptides differing at their C-terminal position and derived from MAGE-A2, -A3, -A4, -A6, -A10, and -A12 (p248G9) and MAGE-A1 (p248D9). Interestingly, p248V9-specific CTL respond to endogenous MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 in an HLA-A*0201-restricted manner and recognize human HLA-A*0201(+)MAGE-A(+) tumor cells of various histological origin. Therefore, this heteroclitic peptide may be considered as a potent candidate for a broad-spectrum tumor vaccination.  相似文献   

6.
BACKGROUND: Recipients of allogeneic stem cell transplants (SCT) are at risk of human CMV infection during their immunocompromised period. The increasing number of reports of CMV isolates resistant to ganciclovir after transplantation has led us to attempt to develop alternative strategies for preventing or treating CMV infection. This study describes a system for generating sufficient numbers of CMV-specific cytotoxic T lymphocytes (CTL) for adoptive immunotherapy after SCT. METHODS: CMV-specific CTL were isolated from a single blood draw of a CMV-seropositive donor using PE-labeled HLA-A*0201/pp65(495-503) tetramers and anti-PE magnetic beads. A mixture of a tetramer-positive population and CD4(+) T lymphocytes was expanded to sufficient numbers for clinical application with IL-2 and immobilized anti-CD3 stimulation. RESULT: Starting from 50 mL of blood, we generated >10(7)/m(2) tetramer-positive CTL within 2 weeks. Flow cytometric analysis of expanded lymphocytes showed that purity of CMV peptide-specific CTL was >75%. Upon stimulation of HLA-A*0201-restricted CMV peptide, expanded CD8 T lymphocytes produced intracellular IFN-gamma. Purified CTL exhibited cytotoxic activity against CMV peptide-pulsed T2 cells and CMV-infected HLA-A*0201-positive fibroblasts, but not against HLA mismatched or uninfected target cells. Alloreactivity could be excluded in MLC. DISCUSSION: This simple, rapid culture system can be useful for adoptive immunotherapy after allogeneic SCT. We are now trying to adapt our laboratory scale study to a clinical scale study under good manufacturing practices (GMP) conditions.  相似文献   

7.
The ex vivo priming and expansion of human CTL by APC, such as autologous monocyte-derived dendritic cells (DC), has the potential for use in immunotherapy for infectious diseases and cancer. To overcome the difficulty of obtaining sufficient number of autologous DC from patients, we have developed cell-based artificial APC (aAPC), designated Med-APC. These aAPC rapidly activate and expand the corresponding Ag-specific CD8+ T cells when pulsed with CTL epitope peptide(s) as efficiently as mature DC (mDC). We have also shown that Med-APC possess an innate cellular machinery that is sufficient to support the processing of complete Ag into immunodominant peptides, which considerably extends the usefulness of this technology. In addition, we have developed a novel expression vector system that expresses ubiquitinated Ag, resulting in an enhanced APC function of this system. Genetically encoded Ag can be easily introduced into Med-APC by transfection with this vector. Med-APC transfected with ubiquitinated Ag can efficiently expand the corresponding Ag-specific CTL without exogenous peptides. Therefore, Med-APC may have important therapeutic implications for adoptive immunotherapy and can be used for the detection of Ag-specific CTL for immunomonitoring.  相似文献   

8.
BACKGROUND: The production of therapeutic T-cell populations for adoptive immunotherapy of cancer requires extensive ex vivo cell processing, including the isolation or creation of Ag-specific T cells and their subsequent propagation to clinically relevant numbers. These procedures must be performed according to the principles of current good manufacturing practices (cGMP) for phase I clinical trials to ensure the identity, purity potency and safety of the cellular product. In this report we describe our approach to manufacturing and characterizing bulk populations of gene-modified autologous T cells for use in treating follicular lymphoma. METHODS: PBMC from healthy donors, obtained after informed consent, were stimulated in vitro with Ab to CD3epsilon (OKT3) and recombinant human IL-2 and then electroporated with plasmid DNA containing a human CD19-specific chimeric Ag receptor (CAR) gene and HSV-1 thymidine kinase (TK) gene. Stably transfected cells were selected in cytocidal concentrations of hygromycin B over multiple 14-day stimulation culture cycles and then cryopreserved. Vials of cryopreserved/selected T cells were used to initiate T-cell expansion cultures to produce cell products for clinical infusion. These cultures were characterized for phenotype, function and suitability for use in adoptive immunotherapy studies. RESULTS: Our results demonstrate that bulk populations of gene-modified T cells derived from peripheral blood of healthy donors express CD19+ chimeric Ag receptor at low levels and can specifically lyse CD19+ target cells in vitro. These cells display a differentiated T-effector phenotype, are sensitive to ganciclovir-mediated killing and display a non-transformed phenotype. TCR Vbeta usage indicated that all populations tested were polyclonal. Ex vivo cell expansion from cryopreserved cell banks is sufficient to produce doses of between 5 x 10(9) and 1 x 10(10) cells/run. One of three transductions resulted in a population of cells that was not suitable for infusion but was identified during release testing. No populations displayed any evidence of bacterial, fungal or mycoplasma contamination. DISCUSSION: We have established a manufacturing strategy that is being used to produce T cells for a phase I clinical trial for follicular lymphoma. Genetically modified T cells have been characterized by cell-surface marker phenotype, functional activity against CD19+ targets and requisite safety testing. These pre-clinical data confirm the feasibility of this approach to manufacturing T-cell products.  相似文献   

9.
Professional APCs, such as dendritic cells, are routinely used in vitro for the generation of cytotoxic T lymphocytes specific for tumor antigens. In addition to dendritic cells, CD40-activated B cells and variant K562 leukemic cells can be readily transfected with nucleic acids for in vitro and in vivo antigen presentation. However, the expression of immunoproteasome components in dendritic cells may preclude display of tumor antigens such as Mart1/MelanA. Here, we use three target epitopes, two derived from tumor antigens [Mart126?C34 (M26) and Cyp1B1239?C247 (Cyp239)] and one derived from the influenza A viral antigen [FluM158?C66 (FluM58)], to demonstrate that CD40-activated B cells, like dendritic cells, have a limited capability to process certain tumor antigens. In contrast, the K562 HLA-A*0201 transfectant efficiently processes and presents M26 and Cyp239 as well as the influenza FluM58 epitopes to T cells. These results demonstrate that the choice of target APC for gene transfer of tumor antigens may be limited by the relative efficacy of proteasome components to process certain tumor epitopes. Importantly, K562 can be exploited as an artificial APC, efficient in processing both M26 and Cyp239 epitopes and presumably, by extension, other relevant tumor antigens.  相似文献   

10.
Extensive replicative capacity of human central memory T cells   总被引:3,自引:0,他引:3  
To characterize the replicative capacity of human central memory (T(CM)) CD4 T cells, we have developed a defined culture system optimized for the ex vivo expansion of Ag-specific CD4(+) T cells. Artificial APCs (aAPCs) consisting of magnetic beads coated with Abs to HLA class II and a costimulatory Ab to CD28 were prepared; peptide-charged HLA class II tetramers were then loaded on the beads to provide Ag specificity. Influenza-specific DR*0401 CD4 T(CM) were isolated from the peripheral blood of normal donors by flow cytometry. Peptide-loaded aAPC were not sufficient to induce resting CD4 T(CM) to proliferate. In contrast, we found that the beads efficiently promoted the growth of previously activated CD4 T(CM) cells, yielding cultures with >80% Ag-specific CD4 cells after two stimulations. Further stimulation with peptide-loaded aAPC increased purity to >99% Ag-specific T cells. After in vitro culture for 3-12 wk, the flu-specific CD4 T(CM) had surface markers that were generally consistent with an effector phenotype described for CD8 T cells, except for the maintenance of CD28 expression. The T(CM) were capable of 20-40 mean population doublings in vitro, and the expanded cells produced IFN-gamma, IL-2, and TNF-alpha in response to Ag, and a subset of cells also secreted IL-4 with PMA/ionomycin treatment. In conclusion, aAPCs expand T(CM) that have extensive replicative capacity, and have potential applications in adoptive immunotherapy as well as for studying the biology of human MHC class II-restricted T cells.  相似文献   

11.
Anchor residue-modified peptides derived from tumor-associated Ag have demonstrated success in engendering immune responses in clinical studies. However, tumor regression does not always correlate with immune responses. One hypothesis to explain this is that CTL resulting from such immunization approaches are variable in antitumor potency. In the present study, we evaluated this hypothesis by characterizing the activity of tumor-associated Ag-specific CTL. We chose an anchor residue-modified peptide from gp100, G209-2M, and used peptide-pulsed dendritic cells to generate CTL from PBMC of HLA-A2(+) normal donors. The specificities and avidities of the resulting CTL were evaluated. The results demonstrate that CTL generated by G209-2M can be classified into three categories: G209-2M-specific CTL which are cytotoxic only to G209-2M-pulsed targets; peptide-specific CTL which recognize both G209 and G209-2M peptides but not melanomas; and melanoma-reactive CTL which recognize peptide-pulsed targets as well as HLA-A2(+)gp100(+) melanomas. CTL that kill only peptide-pulsed targets require a higher peptide concentration to mediate target lysis, whereas CTL that lyse melanomas need a lower peptide concentration. Increasing peptide density on melanomas by loading exogenous G209 peptide enhances their sensitivity to peptide-specific CTL. High avidity CTL clones also demonstrate potent antimelanoma activity in melanoma model in nude mice. Injection of G209 peptide around transplanted tumors significantly enhances the antitumor activity of low avidity CTL. These results suggest that peptide stimulation causes expansion of T cell populations with a range of avidities. Successful immunotherapy may require selective expansion of the higher-avidity CTL and intratumor injection of the peptide may enhance the effect of peptide vaccines.  相似文献   

12.
Effective resetting of the immune system cannot be achieved by non-specific immunosuppression. Instead, novel strategies aim at harnessing the body's natural tolerance mechanisms to rectify an Ag-specific response without disturbing other immune functions. Fine-tuning of the balance between Ag-specific effector and regulatory T (Tr) cells is a promising strategy that requires detailed understanding of the differentiation and expansion pathways of the relevant Tr cell subsets. Here we review recent developments regarding the control of alloreactivity by induction and expansion of Tr cells. T-cell activation in the presence of tolerogenic APC and cytokines leads to the induction of Tr cells, which can mediate tolerance through cytokine-dependent and/or contact-dependent mechanisms. Better understanding of the mechanisms of immune regulation mediated by Tr cells may enable fine-tuning of specific immune responses and pave the way for novel therapeutic approaches.  相似文献   

13.
Myeloid-origin dendritic cells (DCs) can develop into IL-12-secreting DC1 or non-IL-12-secreting DC2 depending on signals received during maturation. Through rapid culture techniques that prepared either mature, CD83+ DC1 or DC2 from CD14+ monocytes in only 2 days followed by a single 6-7 day DC-T cell coculture, we sensitized normal donor CD8+ T cells to tumor Ags (HER-2/neu, MART-1, and gp100) such that peptide Ag-specific lymphocytes constituted up to 16% of the total CD8+ population. Both DC1 and DC2 could sensitize CD8+ T cells that recognized peptide-pulsed target cells. However, with DC2, a general decoupling was observed between recognition of peptide-pulsed T2 target cells and recognition of Ag-expressing tumor cells, with peptide-sensitized T cells responding to tumor only about 15% of the time. In contrast, direct recognition of tumor by T cells was dramatically increased (to 85%) when DC1 were used for sensitization. Enhanced tumor recognition was accompanied by 10- to 100-fold increases in peptide sensitivity and elevated expression of CD8beta, characteristic of high functional avidity T cells. Both of these properties were IL-12-dependent. These results demonstrate the utility of rapid DC culture methods for high efficiency in vitro T cell sensitization that achieves robust priming and expansion of Ag-specific populations in 6 days. They also demonstrate a novel function of IL-12, which is enhancement of CD8+ T cell functional avidity. A new approach to DC-based vaccines that emphasizes IL-12 secretion to enhance functional avidity and concomitant tumor recognition by CD8+ T cells is indicated.  相似文献   

14.
Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34(+) cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34(+) UCB cells could be reproducibly amplified and differentiated into CD56(+)CD3(-) NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2×10(9) NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials.  相似文献   

15.
In this study, we report the adoptive transfer of highly tumor-reactive Melan-A-specific T cell clones to patients with metastatic melanoma, and the follow-up of these injected cells. These clones were generated from HLA-A*0201 patients by in vitro stimulations of total PBMC with the HLA-A*0201-binding Melan-A peptide analog ELAGIGILTV. Ten stage IV melanoma patients were treated by infusion of these CTL clones with IL-2 and IFN-alpha. The generated T cell clones, of effector/memory phenotype were selected on the basis of their ability to produce IL-2 in response to HLA-A*0201 Melan-A-positive melanoma lines. Infused clones were detected, by quantitative PCR, in the blood of three patients for periods ranging from 7 to 60 days. Six patients showed regression of individual metastases or disease stabilization, and one patient experienced a complete response, but no correlation was found between the detection of the infused clones in PBMC or tumor samples and clinical responses. Nonetheless, frequencies of Melan-A/A2-specific lymphocytes, measured by tetramer labeling, increased after treatment in most patients. In one of these patients, who showed a complete response, this increase corresponded to the expansion of new clonotypes of higher avidity than those detected before treatment. Together, our results suggest that infused CTL clones may have initiated an antitumor response that may have resulted in the expansion of a Melan-A-specific CTL repertoire.  相似文献   

16.
The APC/stimulating cell (APC/SC) potential of PBMC from Walter Reed stage 1 and 2 patients and patients with AIDS was tested by using these PBMC as stimulators in an allogeneic MLR. The responding cells were PBMC from unrelated, HIV- donors that were either unfractionated or depleted of APC by plastic and nylon wool adherence. Using this approach, we observed no defect in the APC/SC potential of PBMC from Walter Reed stage 1 and 2 patients. However, PBMC from AIDS patients used as allogeneic stimulators exhibited three different patterns of APC/SC function: 1) no defect in alloantigen (ALLO) APC/SC potential; 2) a defect in ALLO APC/SC function that was detected only if the responder cells were depleted of APC (presenting cell defect); and 3) a defect in ALLO APC/SC function, irrespective of whether the responder cells were depleted of APC (stimulating cell defect). These results indicate that in addition to Th cell defects associated with AIDS, the PBMC from AIDS patients can also exhibit a defect in APC/SC function. This study provides an approach that permits the testing of Ag-presenting function in all AIDS patients, and is therefore not limited to testing patients for whom HIV-, HLA-identical T cells and APC are available.  相似文献   

17.
Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.  相似文献   

18.
The consequences of human lymphocytic choriomeningitis virus (LCMV) infection can be severe, including aseptic meningitis in immunocompetent individuals, hydrocephalus or chorioretinitis in fetal infection, or a highly lethal outcome in immunosuppressed individuals. In murine models of LCMV infection, CD8(+) T cells play a primary role in providing protective immunity, and there is evidence that cellular immunity may also be important in related arenavirus infections in humans. For this reason, we sought to identify HLA-A2 supertype-restricted epitopes from the LCMV proteome and evaluate them as vaccine determinants in HLA transgenic mice. We identified four HLA-A*0201-restricted peptides-nucleoprotein NP(69-77), glycoprotein precursor GPC(10-18), GPC(447-455), and zinc-binding protein Z(49-58)-that displayed high-affinity binding (< or =275 nM) to HLA-A*0201, induced CD8(+) T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LCMV antigens in HLA-restricted human antigen presenting cells. One of the epitopes (GPC(447-455)), after peptide immunization of HLA-A*0201 mice, induced CD8(+) T cells capable of killing peptide-pulsed HLA-A*0201-restricted target cells in vivo and protected mice against lethal intracranial challenge with LCMV.  相似文献   

19.
The development of rapid, efficient, and safe methods for generating Ag-specific T cells is necessary for the clinical application of adoptive immunotherapy. We show that B cells stimulated with CD40 ligand and IL-4 (CD40-B cells) can be efficiently transduced with retroviral vectors encoding a model Ag, CMV tegument protein pp65 gene, and maintain high levels of costimulatory molecules after gene transfer. CTL lines specific for pp65 were readily generated in all four healthy CMV-seropositive donors by stimulating autologous CD8(+) T cells with these transduced CD40-B cells, both of which were derived from 10 ml peripheral blood. ELISPOT assays revealed that the CTL lines used multiple HLA alleles as restricting elements. Thus, CD40-B cells transduced retrovirally with Ag-encoding cDNA can be potent APC and facilitate to generate Ag-specific CTL in vitro.  相似文献   

20.
Functional heterogeneity of vaccine-induced CD8(+) T cells   总被引:5,自引:0,他引:5  
The functional status of circulating vaccine-induced, tumor-specific T cells has been questioned to explain their paradoxical inability to inhibit tumor growth. We enumerated with HLA-A*0201/peptide tetramers (tHLA) vaccine-elicited CD8(+) T cell precursor frequency among PBMC in 13 patients with melanoma undergoing vaccination with the HLA-A*0201-associated gp100:209-217(210 M) epitope. T cell precursor frequency increased from undetectable to 12,400 +/- 3,600 x 10(6) CD8(+) T cells after vaccination and appeared heterogeneous according to previously described functional subtypes: CD45RA(+)CD27(+) (14 +/- 2.6% of tHLA-staining T cells), naive; CD45RA(-)CD27(+) (14 +/- 3.2%), memory; CD45RA(+)CD27(-) (43 +/- 6%), effector; and CD45RA(-)CD27(-) (30 +/- 4.1%), memory/effector. The majority of tHLA(+)CD8(+) T cells displayed an effector, CD27(-) phenotype (73%). However, few expressed perforin (17%). Epitope-specific in vitro stimulation (IVS) followed by 10-day expansion in IL-2 reversed this phenotype by increasing the number of perforin(+) (84 +/- 3.6%; by paired t test, p < 0.001) and CD27(+) (from 28 to 67%; by paired t test, p = 0.01) tHLA(+) T cells. This conversion probably represented a change in the functional status of tHLA(+) T cells rather than a preferential expansion of a CD27(+) (naive and/or memory) PBMC, because it was reproduced after IVS of a T cell clone bearing a classic effector phenotype (CD45RA(+)CD27(-)). These findings suggest that circulating vaccine-elicited T cells are not as functionally active as inferred by characterization of IVS-induced CTL. In addition, CD45RA/CD27 expression may be more informative about the status of activation of circulating T cells than their status of differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号