首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Brian K. Hennen 《CMAJ》1986,135(6):659-660
  相似文献   

5.
6.
7.
8.
The tasks, methods and principles of the evolution of functions are overviewed at various levels of organization of physiological systems with the focus on the central problem of physiological evolution—the origin of life and formation of protocellular functions. This stage of evolution is associated with the emergence of the plasma membrane and ion asymmetry of the cell relative to the extracellular environment. For a long time, evolution proceeded in the sea, where extracellular sodium ions in tandem with the intracellular potassium dominance created conditions for the emergence of electrogenesis, polar cells and epithelia, as well as for the formation of the extracellular body fluid system, making up the internal environment of multicellular organisms. The features of the evolution of organs and functional systems are analyzed. During evolution, hormones, autakoids and incretins began to be involved in the regulation of functions alongside with the nervous system. Sodium-dependent processes in the plasma membrane stimulated the development of absorptive, digestive, excretory, respiratory and homeostatic functions. The substance and patterns of functional evolution are discussed.  相似文献   

9.
Conservation biologists increasingly face the need to provide legislators, courts and conservation managers with data on causal mechanisms underlying conservation problems such as species decline. To develop and monitor solutions, conservation biologists are progressively using more techniques that are physiological. Here, we review the emerging discipline of conservation physiology and suggest that, for conservation strategies to be successful, it is important to understand the physiological responses of organisms to their changed environment. New physiological techniques can enable a rapid assessment of the causes of conservation problems and the consequences of conservation actions.  相似文献   

10.
Odontoblasts are post-mitotic cells organized as a layer of palisade cells along the interface between the dental pulp and dentin. They are responsible for the formation of the physiological primary and secondary dentins. They synthesize the organic matrix of type I collagen and actively participate to its mineralization by secreting proteoglycans and non-collagenous proteins that are implicated in the nucleation and the control of the growth of the mineral phase. They also participate to the maintenance of this hard tissue throughout the life of the tooth by synthesizing reactionary dentin in response to pathological conditions (caries, attrition, erosion…).  相似文献   

11.
12.
Active involvement in the learning process has been suggested to enhance creative thinking, judgement, interpretation, and problem-solving skills. Therefore, educators are encouraged to create an active-learning environment by incorporating active-learning strategies into the class. However, there is very little documentation of the effectiveness of active-learning strategies. Furthermore, faculty are often reluctant to incorporate new strategies without documentation of the effectiveness of these strategies. To address this concern, we compared the performance of two individual classes on an identical respiratory physiology examination. One class was taught respiratory physiology using active-learning strategies. The other class was taught respiratory physiology using the traditional lecture format. The results document that students who learned using active-learning strategies did significantly better (P < 0.05) on the respiratory physiology examination than students who learned by the traditional lecture format (61 +/- 2.2 vs. 86 +/- 1.0). Thus, by actively involving students in the learning process, academic performance is enhanced.  相似文献   

13.
14.
Molecular physiology of olfaction   总被引:4,自引:0,他引:4  
  相似文献   

15.
In 19th century and at the beginning 20th century, reports appeared in the field of comparative and ontogenetic physiology and the value of these methods for understanding of evolution of functions. The term "evolutionary physiology" was suggested by A. N. Severtsov in 1914. In the beginning of 30s, in the USSR, laboratories for researches in problems of evolutionary physiology were created, the results of these researches having been published. In 1956 in Leningrad, the Institute of Evolutionary Physiology was founded by L. A. Orbeli. He formulates the goals and methods of evolutionary physiology. In the following half a century, the evolutionary physiology was actively developed. The evolutionary physiology solves problems of evolution of function of functions evolution, often involving methods of adjacent sciences, including biochemistry, morphology, molecular biology.  相似文献   

16.
Cell physiology of magnesium   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号