首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin‐proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule‐deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO‐targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule‐deficient cells. Stress granule‐deficient cells showed an increase in the formation of mutant ataxin‐1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.  相似文献   

2.
The ubiquitin‐proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.  相似文献   

3.
4.
5.
6.
7.
The myelin-forming oligodendrocytes of the mouse embryonic spinal cord express the three group E Sox proteins Sox8, Sox9, and Sox10. They require Sox9 for their specification from neuroepithelial cells of the ventricular zone and Sox10 for their terminal differentiation and myelination. Here, we show that during oligodendrocyte development, Sox8 is expressed after Sox9, but before Sox10. Loss of Sox8 did not impair oligodendrocyte specification by itself, but enhanced the Sox9-dependent defect. Oligodendrocyte progenitors were still generated in the Sox9-deficient spinal cord, albeit at 20-fold lower rates than in the wildtype. Combined loss of Sox8 and Sox9, in contrast, led to a near complete loss of oligodendrocytes. Other cell types such as ventricular zone cells and radial glia remained unaffected in their numbers as well as their rates of proliferation and apoptosis. Oligodendrocyte development thus relies on the differential contribution of all three group E Sox proteins at various phases.  相似文献   

8.
9.
Heterozygous mutations in the human SOX9 gene cause campomelic dysplasia (CD), a skeletal malformation syndrome with various other organ defects. Severely affected CD patients usually die in the neonatal period due to respiratory distress. We analyzed the dynamic expression pattern of Sox9 in the developing mouse lung throughout morphogenesis. To determine a role of Sox9 in lung development and function, Sox9 was specifically inactivated in respiratory epithelial cells of the mouse lung using a doxycycline-inducible Cre/loxP system. Immunohistochemical and RNA analysis demonstrated extensive inactivation of Sox9 in the embryonic stage of lung development as early as embryonic day (E) 12.5. Lung morphogenesis and lung function after birth were not altered. Compensatory upregulation of Sox2, Sox4, Sox8, Sox10, Sox11, and Sox17 was not detected. Although Sox9 is expressed at high levels throughout lung morphogenesis, inactivation of Sox9 from the respiratory epithelial cells does not alter lung structure, postnatal survival, or repair following oxygen injury.  相似文献   

10.
MicroRNA s (miRNA s) are suspected to be a contributing factor in amyotrophic lateral sclerosis (ALS ). Here, we assess the altered expression of miRNA s and the effects of miR‐124 in astrocytic differentiation in neural stem cells of ALS transgenic mice. Differentially expressed miRNA ‐positive cells (including miR‐124, miR‐181a, miR‐22, miR‐26b, miR‐34a, miR‐146a, miR‐219, miR‐21, miR‐200a, and miR‐320) were detected by in situ hybridization and qRT ‐PCR in the spinal cord and the brainstem. Our results demonstrated that miR‐124 was down‐regulated in the spinal cord and brainstem. In vitro , miR‐124 was down‐regulated in neural stem cells and up‐regulated in differentiated neural stem cells in G93A‐ superoxide dismutase 1 (SOD 1 ) mice compared with WT mice by qRT ‐PCR . Meanwhile, Sox2 and Sox9 protein levels showed converse change with miR‐124 in vivo and vitro . After over‐expression or knockdown of miR‐124 in motor neuron‐like hybrid (NSC 34) cells of mouse, Sox2 and Sox9 proteins were noticeably down‐regulated or up‐regulated, whereas Sox2 and Sox9 mRNA s remained virtually unchanged. Moreover, immunofluorescence results indicated that the number of double‐positive cells of Sox2/glial fibrillary acidic protein (GFAP) and Sox9/glial fibrillary acidic protein (GFAP) was higher in G93A‐SOD 1 mice compared with WT mice. We also found that many Sox2‐ and Sox9‐positive cells were nestin positive in G93A‐SOD 1 mice, but not in WT mice. Furthermore, differentiated neural stem cells from G93A‐SOD 1 mice generated a greater proportion of astrocytes and lower proportion of neurons than those from WT mice. MiR‐124 may play an important role in astrocytic differentiation by targeting Sox2 and Sox9 in ALS transgenic mice.

Cover Image for this issue: doi: 10.1111/jnc.14171 .
  相似文献   

11.
We have evaluated the effects of three different omega‐3 polyunsaturated fatty acids (ω‐3 PUFAs) – docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) on fat accumulation and expression of adipogenic and inflammatory markers using both 3T3‐L1 pre‐adipocytes and differentiated 3T3‐L1 adipocytes. Our results indicate that ω‐3 PUFAs induce the degradation of fatty acid synthase through the ubiquitin‐proteasome system, which is likely to have beneficial metabolic effect on adipose cells. Omega‐3 PUFAs also increase overall levels of polyubiquitinated proteins, at least in part through decreasing the expression of proteasome subunits. Moreover, adipocytes are resistant to proteasome inhibition, which induces adipophilin while decreasing perilipin expression. On the other hand, ω‐3 PUFAs decrease expression of SREBP1 while inducing expression of adipophilin and GLUT4. Moreover, all three ω‐3 PUFAs appear to induce tumour necrosis factor‐α without affecting NFκB levels. All three ω‐3 PUFAs appear to have overall similar effects. Further research is needed to elucidate their mechanism of action.  相似文献   

12.
A major hallmark feature of Alzheimer's disease is the accumulation of amyloid β (Aβ), whose formation is regulated by the γ‐secretase complex and its activating protein (also known as γ‐secretase activating protein, or GSAP). Because GSAP interacts with the γ‐secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti‐Aβ therapy. GSAP derives from a C‐terminal fragment of a larger precursor protein of 98 kDa via a caspase 3‐mediated cleavage. However, the mechanism(s) involved in its degradation remain unknown. In this study, we show that GSAP has a short half‐life of approximately 5 h. Neuronal cells treated with proteasome inhibitors markedly prevented GSAP protein degradation, which was associated with a significant increment in Aβ levels and γ‐secretase cleavage products. In contrast, treatment with calpain blocker and lysosome inhibitors had no effect. In addition, we provide experimental evidence that GSAP is ubiquitinated. Taken together, our findings reveal that GSAP is degraded through the ubiquitin–proteasome system. Modulation of the GSAP degradation pathway may be implemented as a viable target for a safer anti‐Aβ therapeutic approach in Alzheimer's disease.

  相似文献   


13.
黄鳝Sox9基因的克隆及其鉴定分析   总被引:9,自引:0,他引:9  
刘利  郭一清  周荣家 《遗传学报》2001,28(6):535-539
Sox9基因在人和多种动物中具有进化保守性,在性别决定过程中发挥着重要作用。通过对黄鳝Sox9基因的分子克隆及其限制酶切分析,确定了该克隆的限制酶图谱。从限制酶片段的PCR分析以及HMG盒的DNA序列测定,鉴定该阳性克隆为黄鳝Sox9基因克隆,黄鳝Sox9基因的克隆进一步说明Sox9基因在进行上的高度保守性,对其基因组DNA和cDNA序列结构和转基因黄鳝的深入研究,无疑有助于从进化上阐明Sox9基因功能。  相似文献   

14.
Many flowering plants show self‐incompatibility, an intra‐specific reproductive barrier by which pistils reject self‐pollen to prevent inbreeding and accept non‐self pollen to promote out‐crossing. In Petunia, the polymorphic S–locus determines self/non‐self recognition. The locus contains a gene encoding an S–RNase, which controls pistil specificity, and multiple S‐locus F‐box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F‐box) complex that is responsible for mediating degradation of non‐self S‐RNase(s), with which the SLF interacts, via the ubiquitin–26S proteasome pathway. A complete set of SLFs is required to detoxify all non‐self S‐RNases to allow cross‐compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin–26S proteasome pathway, and identify an 18 amino acid sequence in the C‐terminal region of S2‐SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2‐SLF1 stabilized the protein but abolished its function in self‐incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self‐incompatibility.  相似文献   

15.
Hair follicle stem cells (HFSCs) are able to differentiate into neurons and glial cells. Distinct microRNAs (miRNAs) regulate the proliferation and differentiation of HFSCs. However, the exact role of miR-124 in the neural differentiation of HFSCs has not been elucidated. HFSCs were isolated from mouse whisker follicles. miR-9, let-7b, and miR-124, Ptbp1 , and Sox9 expression levels were detected by real-time polymerase chain reaction (RT-PCR). The influence of miR-124 transfection was evaluated using immunostaining. We demonstrated that miR-124 and let-7b expression levels were significantly increased after the neural differentiation. Sox9 and Ptbp1 were identified as the target of miR-124 in the HFSCs. During neural differentiation and miR-124 mimicking, Ptbp1 and Sox9 levels were decreased. Moreover, the miR-124 overexpression increased MAP2 (58.43 ± 11.26) and NeuN (48.34 ± 11.15) proteins expression. The results demonstrated that miR-124 may promote the differentiation of HFSCs into neuronal cells by targeting Sox9 and Ptbp1.  相似文献   

16.
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.  相似文献   

17.
Signaling through the hypoxia‐inducible factor hif‐1 controls longevity, metabolism, and stress resistance in Caenorhabditis elegans. Hypoxia‐inducible factor (HIF) protein levels are regulated through an evolutionarily conserved ubiquitin ligase complex. Mutations in the VHL gene, encoding a core component of this complex, cause a multitumor syndrome and renal cell carcinoma in humans. In the nematode, deficiency in vhl‐1 promotes longevity mediated through HIF‐1 stabilization. However, this longevity assurance pathway is not yet understood. Here, we identify folliculin (FLCN) as a novel interactor of the hif‐1/vhl‐1 longevity pathway. FLCN mutations cause Birt–Hogg–Dubé syndrome in humans, another tumor syndrome with renal tumorigenesis reminiscent of the VHL disease. Loss of the C. elegans ortholog of FLCN F22D3.2 significantly increased lifespan and enhanced stress resistance in a hif‐1‐dependent manner. F22D3.2, vhl‐1, and hif‐1 control longevity by a mechanism distinct from insulin‐like signaling. Daf‐16 deficiency did not abrogate the increase in lifespan mediated by flcn‐1. These findings define FLCN as a player in HIF‐dependent longevity signaling and connect organismal aging, stress resistance, and regulation of longevity with the formation of renal cell carcinoma.  相似文献   

18.
19.
20.
Sox9 expression defines cell progenitors in a variety of tissues during mouse embryogenesis. To establish a genetic tool for cell‐lineage tracing and gene‐function analysis, we generated mice in which the CreERT2 gene was targeted to the endogenous mouse Sox9 locus. In Sox9CreERT2/+;R26R embryos, tamoxifen activated Cre recombinase exclusively in Sox9‐expressing tissues. To determine the suitability of this mouse line for developmental stage‐specific gene recombination, we investigated the cellular origins of the cruciate ligaments of the knee joint and the limb tendons, in which precursor cells have not been defined. The cells in these tissues were labeled after tamoxifen treatment before or at the stage of chondrogenic mesenchymal condensation, indicating that ligament and tendon cells originated from Sox9‐expressing cells and that cell fate determination occurred at mesenchymal condensation. This mouse line is a valuable tool for the temporal genetic tracing of the progeny of, and inducible gene modification in Sox9‐expressing cells. genesis 48:635–644, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号