首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1   总被引:2,自引:0,他引:2  
A bacterium which utilizes 2,4,6-trichlorophenol (TCP) as a sole source of carbon and energy was isolated from soil. The bacterium, designated strain GP1, was identified as an Azotobacter sp. TCP was the only chlorinated phenol which supported the growth of the bacterium. Resting cells transformed monochlorophenols, 2,6-dichlorophenol, and 2,3,6-trichlorophenol. Phenol and a number of phenolic compounds, including 4-methylphenol, all of the monohydroxybenzoates, and several dihydroxybenzoates, were very good carbon sources for Azotobacter sp. strain GP1. The organism utilized up to 800 mg of TCP per liter; the lag phase and time for degradation, however, were severely prolonged at TCP concentrations above 500 mg/liter. Repeated additions of 200 mg of TCP per liter led to accelerated degradation, with an optimum value of 100 mg of TCP per liter per h. TCP degradation was significantly faster in shaken than in nonshaken cultures. The optimum temperature for degradation was 25 to 30 degrees C. Induction studies, including treatment of the cells with chloramphenicol prior to TCP or phenol addition, revealed that TCP induced TCP degradation but not phenol degradation and that phenol induced only its own utilization. Per mol of TCP, 3 mol of Cl- was released. 2,6-Dichloro-p-benzoquinone was detected in the resting-cell medium of Azotobacter sp. strain GP1. By chemical mutagenesis, mutants blocked in either TCP degradation or phenol degradation were obtained. No mutant defective in the degradation of both phenols was found, indicating separate pathways for the dissimilation of the compounds. In some of the phenol-deficient mutants, pyrocatechol was found to accumulate, and in some of the TCP-deficient mutants, 2,6-dichlorohydroquinone was found to accumulate.  相似文献   

2.
The newly isolated bacterial strain GP1 can utilize 1, 2-dibromoethane as the sole carbon and energy source. On the basis of 16S rRNA gene sequence analysis, the organism was identified as a member of the subgroup which contains the fast-growing mycobacteria. The first step in 1,2-dibromoethane metabolism is catalyzed by a hydrolytic haloalkane dehalogenase. The resulting 2-bromoethanol is rapidly converted to ethylene oxide by a haloalcohol dehalogenase, in this way preventing the accumulation of 2-bromoethanol and 2-bromoacetaldehyde as toxic intermediates. Ethylene oxide can serve as a growth substrate for strain GP1, but the pathway(s) by which it is further metabolized is still unclear. Strain GP1 can also utilize 1-chloropropane, 1-bromopropane, 2-bromoethanol, and 2-chloroethanol as growth substrates. 2-Chloroethanol and 2-bromoethanol are metabolized via ethylene oxide, which for both haloalcohols is a novel way to remove the halide without going through the corresponding acetaldehyde intermediate. The haloalkane dehalogenase gene was cloned and sequenced. The dehalogenase (DhaAf) encoded by this gene is identical to the haloalkane dehalogenase (DhaA) of Rhodococcus rhodochrous NCIMB 13064, except for three amino acid substitutions and a 14-amino-acid extension at the C terminus. Alignments of the complete dehalogenase gene region of strain GP1 with DNA sequences in different databases showed that a large part of a dhaA gene region, which is also present in R. rhodochrous NCIMB 13064, was fused to a fragment of a haloalcohol dehalogenase gene that was identical to the last 42 nucleotides of the hheB gene found in Corynebacterium sp. strain N-1074.  相似文献   

3.
The enzyme which catalyzes the dehalogenation of 2,4,6-trichlorophenol (TCP) was purified to apparent homogeneity from an extract of TCP-induced cells of Azotobacter sp. strain GP1. The initial step of TCP degradation in this bacterium is inducible by TCP; no activity was found in succinate-grown cells or in phenol-induced cells. NADH, flavin adenine dinucleotide, and O2 are required as cofactors. As reaction products, 2,6-dichlorohydroquinone and Cl- ions were identified. Studies of the stoichiometry revealed the consumption of 2 mol of NADH plus 1 mol of O2 per mol of TCP and the formation of 1 mol of Cl- ions. No evidence for membrane association or for a multicomponent system was obtained. Molecular masses of 240 kDa for the native enzyme and 60 kDa for the subunit were determined, indicating a homotetrameric structure. Cross-linking studies with dimethylsuberimidate were consistent with this finding. TCP was the best substrate for 2,4,6-trichlorophenol-4-monooxygenase (TCP-4-monooxygenase). The majority of other chlorophenols converted by the enzyme bear a chloro substituent in the 4-position. 2,6-Dichlorophenol, also accepted as a substrate, was hydroxylated in the 4-position to 2,6-dichlorohydroquinone in a nondehalogenating reaction. NADH and O2 were consumed by the pure enzyme also in the absence of TCP with simultaneous production of H2O2. The NH2-terminal amino acid sequence of TCP-4-monooxygenase from Azotobacter sp. strain GP1 revealed complete identity with the nucleotide-derived sequence from the analogous enzyme from Pseudomonas pickettii and a high degree of homology with two nondehalogenating monooxygenases. The similarity in enzyme properties and the possible evolutionary relatedness of dehalogenating and nondehalogenating monooxygenases are discussed.  相似文献   

4.
有机污染物2,4,6-三氯苯酚(2,4,6-TCP)普遍存在于地下水和河流底泥等厌氧环境中。为了探究厌氧微生物菌群XH-1对2,4,6-TCP的降解能力,本研究以2,4,6-TCP为底物,接种XH-1建立微宇宙培养体系,并以中间产物4-氯苯酚(4-CP)和苯酚为底物分别进行分段富集培养,利用高效液相色谱分析底物的降解转化,同时基于16S rRNA基因高通量测序分析微生物群落结构变化。结果表明: 2,4,6-TCP(122 μmol·L-1)以0.15 μmol·d-1的速率在80 d内被完全降解转化,降解中间产物分别为2,4-二氯苯酚(2,4-DCP)、4-氯苯酚和苯酚,所有中间产物最终在325 d被完全降解。高通量测序结果表明,脱卤杆菌和脱卤球菌可能驱动2,4,6-TCP还原脱氯,其中,脱卤球菌可能在4-CP的脱氯转化中发挥重要作用,并与丁酸互营菌和产甲烷菌联合作用彻底降解2,4,6-TCP。  相似文献   

5.
 Eight bacterial isolates from enrichment with 2,4,6-trichlorophenol (TCP) as sole carbon source were tested for their potential to degrade prochloraz. None of them could grow on prochloraz. Strain C964, identified as Aureobacterium sp., effectively reduced the fungitoxic activity of prochloraz in a bioassay and degradation was confirmed by HPLC. Two other isolates, strain C611 and C961, using TCP as a carbon source, belong to the β subclass of the proteobacteria and presumely degrade TCP via 2,4-dichlorohydroquinone and hydroxyhydroquinone as indicated by oxygen-consumption tests. Received: 3 July 1995/Received revision: 27 July 1995/Accepted: 31 July 1995  相似文献   

6.
Halogenated compounds have been incorporated into the environment, principally through industrial activities. Nonetheless, microorganisms able to degrade halophenols have been isolated from neither industrial nor urban environments. In this work, the ability of bacterial communities from oligotrophic psychrophilic lakes to degrade 2,4,6-tribromophenol and 2,4,6-trichlorophenol, and the presence of the genes tcpA and tcpC described for 2,4,6-trichlorophenol degradation were investigated. After 10 days at 4°C, the microcosms showed the ability to degrade both halophenols. Nonetheless, bacterial strains isolated from the microcosms did not degrade any of the halophenols, suggesting that the degradation was done by a bacterial consortium. Genes tcpA and tcpC were not detected. Results demonstrated that the bacterial communities present in oligotrophic psycrophilic lakes have the ability to degrade halophenolic compounds at 4°C and the enzymes involved in their degradation could be codified in genes different to those described for bacteria isolated from environments contaminated by industrial activities.  相似文献   

7.
The metabolism of biphenyl by Mycobacterium sp. PYR-1 was investigated. The Mycobacterium sp. degraded >98% of the biphenyl added within 72 h. Analysis of ethyl acetate extracts of the culture medium by HPLC indicated that benzoic acid was the major metabolite. Other products were 4-hydroxybiphenyl, 4-hydroxybenzoic acid, and 5-oxo-5-phenylpentanoic acid. The metabolites were characterized by mass and 1H NMR spectrometry. Identification of benzoic acid and 5-oxo-5-phenylpentanoic acid indicates that biphenyl degradation by Mycobacterium sp. PYR-1 is generally similar to known pathways. A novel alternative metabolic pathway consisted of monooxygenation at C-4 of biphenyl to give 4-hydroxybiphenyl, with subsequent degradation via ring cleavage to 4-hydroxybenzoic acid.  相似文献   

8.
Hydroxyquinol 1,2-dioxygenase was purified from cells of the soil bacterium Azotobacter sp. strain GP1 grown with 2,4,6-trichlorophenol as the sole source of carbon. The presumable function of this dioxygenase enzyme in the degradative pathway of 2,4,6-trichlorophenol is discussed. The enzyme was highly specific for 6-chlorohydroxyquinol (6-chloro-1,2,4-trihydroxybenzene) and hydroxyquinol (1,2,4-trihydroxybenzene) and was found to perform ortho cleavage of the hydroxyquinol compounds, yielding chloromaleylacetate and maleylacetate, respectively. With the conversion of 1 mol of 6-chlorohydroxyquinol, the consumption of 1 mol of O(inf2) and the formation of 1 mol of chloromaleylacetate were observed. Catechol was not accepted as a substrate. The enzyme has to be induced, and no activity was found in cells grown on succinate. The molecular weight of native hydroxyquinol 1,2-dioxygenase was estimated to 58,000, with a sedimentation coefficient of 4.32. The subunit molecular weight of 34,250 indicates a dimeric structure of the dioxygenase enzyme. The addition of Fe(sup2+) ions significantly activated enzyme activity, and metal-chelating agents inhibited it. Electron paramagnetic resonance data are consistent with high-spin iron(III) in a rhombic environment. The NH(inf2)-terminal amino acid sequence was determined for up to 40 amino acid residues and compared with sequences from literature data for other catechol and chlorocatechol dioxygenases.  相似文献   

9.
本文采用间歇试验,对硝酸盐还原条件下Fe0/厌氧微生物联合体系降解2,4,6-三氯酚(2,4,6-TCP)进行了研究。考察了不同硝酸盐浓度下,体系中pH、硝酸盐浓度以及硝酸盐还原活性的变化情况。结果表明:当2,4,6-TCP初始浓度为20mg/L时,硝酸盐对Fe0/厌氧微生物联合体系降解2,4,6-三氯酚具有明显的抑制作用;且随着硝酸盐浓度的升高,2,4,6-TCP的去除率降低,硝酸盐还原活性升高;体系先发生硝酸盐还原再进行2,4,6-TCP还原脱氯。  相似文献   

10.
Under anoxic conditions Pseudomonas sp. strain JLR11 can use 2,4, 6-trinitrotoluene (TNT) as the sole N source, releasing nitrite from the aromatic ring and subsequently reducing it to ammonium and incorporating it into C skeletons. This study shows that TNT can also be used as a terminal electron acceptor in respiratory chains under anoxic conditions by Pseudomonas sp. strain JLR11. TNT-dependent proton translocation coupled to the reduction of TNT to aminonitrotoluenes has been observed in TNT-grown cells. This extrusion did not occur in nitrate-grown cells or in anaerobic TNT-grown cells treated with cyanide, a respiratory chain inhibitor. We have shown that in a membrane fraction prepared from Pseudomonas sp. strain JLR11 grown on TNT under anaerobic conditions, the synthesis of ATP was coupled to the oxidation of molecular hydrogen and to the reduction of TNT. This phosphorylation was uncoupled by gramicidin. Respiration by Pseudomonas sp. strain JLR11 is potentially useful for the biotreatment of TNT in polluted waters and soils, particularly in phytorhizoremediation, in which bacterial cells are transported to the deepest root zones, which are poor in oxygen.  相似文献   

11.
A bacterium that utilizes 2,4,6-tribromophenol (2,4,6-TBP) as sole carbon and energy source was isolated from soil contaminated with brominated pollutants. This bacterium, designated strain TB01, was identified as an Ochrobactrum species. The organism degraded 100 microM of 2,4,6-TBP within 36 h in a growing culture. In addition, it released 3 mol of bromine ions from 1 mol of 2,4,6-TBP during the complete degradation of 2,4,6-TBP in a resting cell assay. Moreover, cells grown on 2,4,6-TBP degraded 2,6-dibromophenol (2,6-DBP), 4-bromophenol (4-BP), 2,4,6-trichlorophenol (2,4,6-TCP) and phenol. Metabolic intermediates were detected in the reaction mixture of an in vitro assay for 2,4,6-TBP, and they were identified as 2,4-DBP and 2-BP. NADH was required for the debromination of 2,4,6-TBP. These results suggest that 2,4,6-TBP is converted to phenol through sequential reductive debromination reactions via 2,4-DBP and 2-BP by this strain.  相似文献   

12.
微小杆菌(Exiguobacterium sp.)对肉桂酸降解行为   总被引:1,自引:0,他引:1  
【目的】为有效缓解自毒物质肉桂酸对西瓜等作物生长的危害,从宁夏中卫硒砂瓜连作土壤中分离筛选得到一株高效降解肉桂酸的菌株,研究其基本降解特性。【方法】分离筛选得到一株能有效利用肉桂酸生长的菌株,采用16S r RNA基因序列分析进行菌株鉴定,运用高效液相色谱法和西瓜幼苗生长毒性实验检测降解特性。【结果】从多年西瓜连作土壤中筛选得到一株高效降解肉桂酸的细菌R30,鉴定为Exiguobacterium sp.,其96 h内对肉桂酸的降解率可达99%以上,最适降解温度和p H分别为30°C、p H 7.0。除肉桂酸外,该菌也能够高效降解香豆酸、阿魏酸、苯甲酸等其他酚酸类物质,表现出一定的底物广谱性;检测96 h降解液对西瓜种子萌发直至幼苗生长阶段的影响表明,该菌株可有效缓解肉桂酸对西瓜幼苗的生长抑制作用。【结论】菌株R30在肉桂酸、香豆酸、阿魏酸、苯甲酸等酚酸类物质导致的农作物连作障碍治理领域具有潜在的开发应用价值。  相似文献   

13.
Klebsiella sp. strain C1 isolated from activated sludge metabolized 2,4,6-trinitrotoluene (TNT) by two different pathways. The typical metabolites in the nitro group reduction pathway of TNT, such as hydroxylamino-dinitrotoluenes and amino-dinitrotoluenes, were detected. Dinitrotoluenes and nitrite were also detected, possibly produced by a denitration pathway. After incubation of [U-14C]TNT for 28 and 77 d, 2.4 and 6.24%, respectively, were released as 14CO2. This mineralization rate was higher than those reported by any other TNT degrading bacteria and might be due to the dual pathways of degradation in this bacterium.  相似文献   

14.
Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C and pH 2.0.  相似文献   

15.
Abstract A mutant strain of Azobacter sp. GP1 converted 4-chlorphenol to 4-chlorocatechol under cometabolic conditions. Under the same conditions the wild-type strain accumulated yellow compound, which by chemical and spectroscopic methods was identified as 5-chloro-2-hydroxy-6-oxohexadienoic acid (5-chloro-2-hydroxy-muconic semialdehyde). The structure of this compound indicates a meta -proximal cleavage of 4-chlorocatechol.  相似文献   

16.
Abstract A Pseudomonas sp. strain WR401 was isolated for growth on 3-, 4-, and 5-methylsalicylate. The organism was capable of growth on o -toluate. The data on enzyme activities in cell-free extracts, DHB dehydrogenase and catechol 2,3-dioxygenase, as well as the cooxidation of the substrate analog 2-chlorobenzoate yielding 3-chlorocatechol indicated a pathway for o -toluate degradation through 6-methyldihydrodihydroxybenzoate, 3-methylcatechol and further through the meta -pathway. In contrast to other toluate dioxygenating enzymes found in m - and p -toluate degrading organisms, strain WR401 was able to dioxygenate a wider range of chlorobenzoates including 2-chlorobenzoate.  相似文献   

17.
Pseudomonas sp. strain HBP1 was found to grow on 2-hydroxy- and 2,2'-dihydroxy-biphenyl as the sole carbon and energy sources. The first step in the degradation of these compounds was catalyzed by an NADH-dependent monooxygenase. The enzyme inserted a hydroxyl group adjacent to the already existing hydroxyl group to form 2,3-dihydroxybiphenyl when acting on 2-hydroxybiphenyl and to form 2,2',3-trihydroxybiphenyl when acting on 2,2'-dihydroxybiphenyl. To be substrates of the monooxygenase, compounds required a 2-hydroxyphenyl-R structure, with R being a hydrophobic group (e.g., methyl, ethyl, propyl, sec-butyl, phenyl, or 2-hydroxyphenyl). Several chlorinated hydroxybiphenyls served as pseudosubstrates by effecting consumption of NADH and oxygen without being hydroxylated. Further degradation of 2,3-dihydroxy- and 2,2',3-trihydroxybiphenyl involved meta cleavage, with subsequent formation of benzoate and salicylate, respectively.  相似文献   

18.
Pseudomonas sp. strain HBP1 was found to grow on 2-hydroxy- and 2,2'-dihydroxy-biphenyl as the sole carbon and energy sources. The first step in the degradation of these compounds was catalyzed by an NADH-dependent monooxygenase. The enzyme inserted a hydroxyl group adjacent to the already existing hydroxyl group to form 2,3-dihydroxybiphenyl when acting on 2-hydroxybiphenyl and to form 2,2',3-trihydroxybiphenyl when acting on 2,2'-dihydroxybiphenyl. To be substrates of the monooxygenase, compounds required a 2-hydroxyphenyl-R structure, with R being a hydrophobic group (e.g., methyl, ethyl, propyl, sec-butyl, phenyl, or 2-hydroxyphenyl). Several chlorinated hydroxybiphenyls served as pseudosubstrates by effecting consumption of NADH and oxygen without being hydroxylated. Further degradation of 2,3-dihydroxy- and 2,2',3-trihydroxybiphenyl involved meta cleavage, with subsequent formation of benzoate and salicylate, respectively.  相似文献   

19.
Chlorophenols are widely used as biocides, leading them to being prevalent environmental contaminants that pose toxic threats to ecosystems. In this study, a Dehalobacter species strain TCP1 was isolated from a digester sludge sample, which is able to dechlorinate 2,4,6-trichlorophenol (2,4,6-TCP) to 4-monochlorophenol (4-MCP) with H2 as the sole electron donor and acetate as the carbon source. Strain TCP1 also distinguishes itself from other Dehalobacter species with its capability to dechlorinate tetrachloroethene or trichloroethene (TCE) to both cis- and trans-dichloroethenes in a ratio of 5.6 (±0.2):1. The growth yields of strain TCP1 on TCE and 2,4,6-TCP were 4.14 × 1013 and 5.77 × 1013 cells mol?1 of Cl? released, respectively. Strain TCP1 contains five unusually long 16S rRNA gene copies per genome, and the extra length is due to the ~110 bp insertion sequences at their 5′-ends. This suggests that strain TCP1 may represent a novel Dehalobacter species. A putative chlorophenol reductive dehalogenase gene—debcprA—was identified to catalyze the ortho-chlorine removal from 2,4,6-TCP. Both the culture-dependent and housekeeping rpoB gene-based approaches indicate the purity of the culture. Strain TCP1 can serve as a promising candidate for the bioremediation of 2,4,6-TCP contaminated sites, and its discovery expands our understanding of metabolic capabilities of Dehalobacter species.  相似文献   

20.
The enzyme which cleaves the benzene ring of 6-chlorohydroxyquinol was purified to apparent homogeneity from an extract of 2,4,6-trichlorophenol-grown cells of Streptomyces rochei 303. Like the analogous enzyme from Azotobacter sp. strain GP1, it exhibited a highly restricted substrate specificity and was able to cleave only 6-chlorohydroxyquinol and hydroxyquinol and not catechol, chlorinated catechols, or pyrogallol. No extradiol-cleaving activity was observed. In contrast to 6-chlorohydroxyquinol 1,2-dioxygenase from Azotobacter sp. strain GP1, the S. rochei enzyme had a distinct preference for 6-chlorohydroxyquinol over hydroxyquinol (kcat/Km = 1.2 and 0.57 s-1.microM-1, respectively). The enzyme from S. rochei appears to be a dimer of two identical 31-kDa subunits. It is a colored protein and was found to contain 1 mol of iron per mol of enzyme. The NH2-terminal amino acid sequences of 6-chlorohydroxyquinol 1,2-dioxygenase from S. rochei 303 and from Azotobacter sp. strain GP1 showed a high degree of similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号