首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bifunctional NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase from ascites tumor cells has very different kinetic properties from the larger NADP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase present in all mammalian cells. The NAD-dependent dehydrogenase is unique in that it requires formation of a magnesium.enzyme complex to allow addition of the first substrate, NAD+. It catalyzes an equilibrium ordered kinetic mechanism that has methylenetetrahydrofolate as the last reactant to add and NADH as the last product released. The NADP-dependent dehydrogenase has the same order of addition of substrates, but NADPH is released prior to methenyltetrahydrofolate. The dehydrogenase-cyclohydrolase activities of both enzymes channel methenyltetrahydropteroylglutamate intermediates with the same efficiency which is unaffected by the number of glutamyl residues in the methylenetetrahydrofolate substrate. However, the cyclohydrolase activity of the bifunctional protein is kinetically independent of its dehydrogenase activity, as supported by its lack of inhibition by NAD+, whereas NADP+ strongly inhibits that of the NADP-dependent enzyme. This difference is further demonstrated by the observation that conversion of formyltetrahydrofolate to methylenetetrahydrofolate in the presence of reduced pyridine nucleotide is catalyzed readily only by the bifunctional enzyme.  相似文献   

2.
The active NAD-dependent glutamate dehydrogenase of wild type yeast cells fractionated by DEAE-Sephacel chromatography was inactivated in vitro by the addition of either the cAMP-dependent or cAMP-independent protein kinases obtained from wild type cells. cAMP-dependent inhibition of glutamate dehydrogenase activity was not observed in the crude extract of bcy1 mutant cells which were deficient in the regulatory subunit of cAMP-dependent protein kinase. The cAMP-dependent protein kinase of CYR3 mutant cells, which has a high K alpha value for cAMP in the phosphorylation reaction, required a high cAMP concentration for the inactivation of NAD-dependent glutamate dehydrogenase. An increased inactivation of partially purified active NAD-dependent glutamate dehydrogenase (Mr = 450,000) was observed to correlate with increased phosphorylation of a protein subunit (Mr = 100,000) of glutamate dehydrogenase. The phosphorylated protein was labeled by an NADH analog, 5'-p-fluorosulfonyl[14C]benzoyladenosine. Activation and dephosphorylation of inactive NAD-dependent glutamate dehydrogenase fractions were observed in vitro by treatment with bovine alkaline phosphatase or crude yeast cell extracts. These results suggested that the conversion of the active form of NAD-dependent glutamate dehydrogenase to an inactive form is regulated by phosphorylation through cAMP-dependent and cAMP-independent protein kinases.  相似文献   

3.
Mouse fibroblasts in which the mthfd2 gene encoding mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) was previously inactivated were infected with retroviral expression constructs of dehydrogenase/cyclohydrolase cDNA. Cellular fractionation confirmed that the expressed proteins were properly targeted to the mitochondria. Expression of the NAD-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase enzyme in mitochondria corrected the glycine auxotrophy of the null mutant cells. A construct in which the cyclohydrolase activity of NMDMC was inactivated by point mutation also rescued the glycine auxotrophy, although poorly. This suggests that the cyclohydrolase activity is also required to ensure optimal production of 10-formyltetrahydrofolate. The expression of the NADP-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase-synthetase in the mitochondria also reversed the glycine requirement of the null cells demonstrating that the use of the NAD cofactor is not absolutely essential to maintain the flux of one-carbon metabolites. All rescued cells demonstrated a decrease in the ratio of incorporation of exogenous formate to serine in standardized radiolabeling studies. This ratio, which is approximately 2.5 for nmdmc(-/-) cells and 0.3 for the wild type cells under the conditions used, is a qualitative indicator of the ability of the mitochondria of the cells to generate formate.  相似文献   

4.
An enzyme activity not detected in normal cells is expressed in embryonic, undifferentiated, or transformed cells. Twenty-one established mammalian cell lines, both tumorigenic and nontumorigenic, were found to have an NAD-dependent methylenetetrahydrofolate dehydrogenase (Scrimgeour, K.G., and Huennekens, F.M. (1960) Biochem. Biophys. Res. Commun. 2, 230-233) in addition to the well-characterized NADP-specific activity. The NAD-dehydrogenase in cell extracts can be separated from the NADP activity by column chromatography. Normal adult tissues including brain, heart, skeletal muscle, liver, and kidney contain the NADP but not the NAD activity. Only normal tissues which contain differentiating cells such as bone marrow, thymus, spleen, and embryonic liver contain the NAD activity. The distribution of the NAD enzyme suggests that it could be useful as an oncodevelopmental marker. Its physiological role is unknown, but it is proposed that it promotes purine synthesis and perhaps contributes to the methionine dependence and rapid growth observed for many established lines.  相似文献   

5.
Twenty strains of Bacteroides fragilis were screened for hydroxysteroid oxidoreductase activity in cell-free preparations. Eighteen strains were shown to contain NAD-dependent 7alpha-hydroxysteroid dehydrogenase. Sixteen of the strains containing the NAD-dependent enzyme also contained NADP-depedent 7alpha-hydroxysteroid dehydrogenase, but invariably in lesser amounts. A strain particulary rich in both 7alpha-hydroxysteroid dehydrogenase activities was selected for further study. Measurement of activity as a function of pH revealed a fairly sharp optimal activity range of 9.5--10.0 for the NAD-dependent enzyme and a broad flat optimal range of 7.0--9.0 for the NADP-dependent enzyme. Michaelis constants for trihydroxy-bile acids for the NAD-dependent enzyme were in the range of 0.32--0.34 mM, whereas dihydroxy-bile acids gave a Km of 0.1 mM. Thin-layer chromatography studies on the oxidation product of 3alpha, 7alpha-dihydroxy-5beta-cholanoic acid (chenodeoxycholic acid) by the dehydrogenase revealed a band corresponding to that of synthetic 3alpha-hydroxy, 7-keto-5beta-cholanoic acid. Similarly the oxidation product of chenodeoxycholic acid by both 7alpha-hydroxysteroid dehydrogenase and commercially available 3alpha-hy-droxysteroid dehydrogenase revealed a band corresponding to that of synthetic 3,7-diketo-5beta-cholanoic acid. Neither of these two oxidation products could be distinguished from those by the Escherichia coli dehydrogenase oxidation previously reported. Disc-gel electrophoresis of a cell-free lyophilized preparation indicated one active band for NAD-dependent activity of mobility similar to that for the NADP-dependent E. coli enzyme. The NADP-dependent dehydrogenase was unstable and rapidly lost activity after polyacylamide disc-gel electrophoresis, ultracentrifugation, freezing on refrigeration at 4 degrees C. No 3 alpha- or 12alpha-oriented oxidoreductase activity was demonstrated in any of the strains examined.  相似文献   

6.
D-Lactate dehydrogenase (EC 1.1.1.28) from Limulus polyphemus is a homodimer which is composed of identical subunits of Mr = 35 000. The enzyme may be reversibly denatured and dissociated at acid pH or in 6M guanidine X HCl. The sigmoidal time course of reactivation obeys a consecutive uni-bimolecular mechanism with k1 = 6 X 10(-4) S-1 and k2 = 1.3 X 10(-4) M-1 S-1 (20 degrees C) as first- and second-order rate constants. Cross-linking experiments with glutaraldehyde prove that reactivation and dimer formation run parallel. Joint "synchronous" reconstitution of the enzyme with dimeric porcine mitochondrial malate dehydrogenase (after denaturation in 6M guanidine X HCl) does not yield active hybrids. The unchanged kinetics of reactivation in the absence and presence of the prospective partner of hybridization prove that inactive hybrid intermediates may also be excluded. The absence of hybrids upon synchronous reconstitution of the two closely related dimeric NAD-dependent dehydrogenases clearly suggests that the assembly of nascent oligomeric proteins must be highly specific.  相似文献   

7.
The NAD-dependent glutamate dehydrogenase from Candida utilis was isolated from 32P-labeled cells following enzyme inactivation promoted by glutamate starvation and found to exist in a phosphorylated form. Analysis of purified, fully active NAD-dependent glutamate dehydrogenase (a form) and inactive NAD-dependent glutamate dehydrogenase (b form) for alkalilabile phosphate revealed that the a form contained 0.09 +/- 0.06 mol of phosphate/mol of enzyme subunit and b form 1.25 +/- 0.06 mol of phosphate/mol of enzyme subunit. Phosphorylation caused a 10-fold reduction in enzyme specific activity. Dephosphorylation (release of 32P) and enzyme reactivation occurred on incubation with cell-free yeast extracts, indicating the presence of a phosphoprotein phosphatase in such preparations.  相似文献   

8.
The dimeric bifunctional enzyme aspartokinase II-homoserine dehydrogenase II (Mr = 2 X 88,000) of Escherichia coli K12 can be cleaved into two nonoverlapping fragments by limited proteolysis with subtilisin. These two fragments can be separated under nondenaturing conditions as dimeric species, which indicates that each fragment has retained some of the association areas involved in the conformation of the native protein. The smaller fragment (Mr = 2 X 24,000) is devoid of aspartokinase and homoserine dehydrogenase activity. The larger fragment (Mr = 2 X 37,000) is endowed with full homoserine dehydrogenase activity. These results show that the polypeptide chains of the native enzyme are organized in two different domains, that both domains participate in building up the native dimeric structure, and that one of these domains only is responsible for homoserine dehydrogenase activity. A model of aspartokinase II-homoserine dehydrogenase II is proposed, which accounts for the present results.  相似文献   

9.
C K Barlowe  D R Appling 《Biochemistry》1990,29(30):7089-7094
An NAD(+)-dependent 5,10-methylenetetrahydrofolate (THF) dehydrogenase has been purified to homogeneity from the yeast Saccharomyces cerevisiae. The purified enzyme exhibits a final specific activity of 5.4 units mg-1 and is represented by a single protein of apparent Mr = 33,000-38,000 as determined by sodium dodecyl sulfate gel electrophoresis. A native Mr = 64,000 was determined by gel filtration, suggesting a homodimer subunit structure. Cross-linking experiments with dimethyl suberimidate confirmed the dimeric structure. The enzyme is specific for NAD+ and is not dependent on Mg2+ for activity. The forward reaction initial velocity kinetics are consistent with a sequential reaction mechanism. With this model, Km values for NAD+ and (6R,S)-5,10-methylene-THF are 1.6 and 0.06 mM, respectively. In contrast to all other previously described eukaryotic 5,10-methylene-THF dehydrogenases, the purified enzyme is apparently monofunctional, with undetectable 5,10-methenyl-THF cyclohydrolase and 10-formyl-THF synthetase activities. Subcellular fractionation of yeast indicates the enzyme is cytoplasmic, with no NAD(+)-dependent 5,10-methylene-THF dehydrogenase detectable in mitochondria. The activity was found in all yeast strains examined, at all stages of growth from the lag phase through the stationary phase.  相似文献   

10.
The NAD-dependent glutamate dehydrogenase from Phycomyces spores was purified more than 300-fold. Estimation of Mr by gel filtration gave a value of 98,000 whereas after SDS-PAGE one major band of Mr 54,000 was found, suggesting that the enzyme is a dimer. The enzyme was virtually dependent on the presence of AMP for activity and showed half-maximal activation at 9.5 and 43 microM-AMP in the direction of animation and deamination respectively. ADP was nearly as effective at 20-fold higher concentrations. Other nucleotide monophosphates were ineffective and nucleoside triphosphates were slightly inhibitory. Hyperbolic kinetics were found for all substrates yielding Km values of about 10 mM for ammonium, 1 mM for 2-oxoglutarate and 0.1 mM for NADH in the direction of amination, and 10 mM for glutamate and 0.7 mM for NAD in the direction of deamination.  相似文献   

11.
Metabolism of lactate as a carbon source by Pseudomonas citronellolis occurred via a nicotinamide adenine dinucleotide (NAD)-independent L-lactate dehydrogenase, which was present in cells grown on DL-lactate but was not present in cells grown on acetate, aspartate, citrate, glucose, glutamate, or malate. The cells also possessed a constitutive, NAD-independent malate dehydrogenase instead of the conventional NAD-dependent malate dehydrogenase instead of the conventional NAD-dependent enzyme in the tricarboxylic acid cycle. Both enzymes were particulate and used dichlorophenolindo-phenol or oxygen as an electron acceptor. In acetate-grown cells, the activity of pyruvate dehydrogenase and NAD phosphate-linked malate enzyme decreased, cells grown on glucose or lactate. This was consistent with the need to maintain a supply of oxalacetate for metabolism of acetate via the tricarboxylic acid cycle. Changes in enzyme activities suggest that gluconeogenesis from noncarbohydrate carbon sources occurs via the malate enzyme (when oxalacetate decarboxylase is inhibited) or a combination of the NAD-independent malate dehydrogenase and oxalacetate decarboxylase.  相似文献   

12.
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V max, are strongly increased in the presence of a M r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH NAD-dependent methanol dehydrogenase - ADH NAD-dependent alcohol dehydrogenase - A1DH CoA-linked NAD-dependent aldehyde dehydrogenase - HPS hexulose-6-phosphate synthase - G6Pdh glucose-6-phosphate dehydrogenase  相似文献   

13.
Summary Hydrogenomonas H 16 synthetized two chromatographically distinct forms of glutamate dehydrogenase which differed in their thermolability. One glutamate dehydrogenase utilized NAD, the other NADP as a coenzyme.Low specific activity of NAD-dependent glutamate dehydrogenase was found in cells grown with glutamate as sole nitrogen source or in cells grown with a high concentration of ammonium ions. In the presence of a low concentration of ammonium ions or in a nitrogen free medium, the specific activity of the NAD-dependent enzyme increased. Corresponding to the formation of the NAD-dependent glutamate dehydrogenase the enzyme glutamine synthetase was synthesized. The ratio of NAD-dependent glutamate dehydrogenase to glutamine synthetase activity differed only slightly in cells grown with different nitrogen and carbon sources.The NADP-dependent glutamate dehydrogenase was found in high specific activity in cells grown with an excess of ammonium ions. Under nitrogen starvation the formation of the NADP-dependent glutamate dehydrogenase ceased and the enzyme activity decreased.  相似文献   

14.
Bonete MJ  Ferrer J  Pire C  Penades M  Ruiz JL 《Biochimie》2000,82(12):1143-1150
An NAD-dependent D-2-hydroxyacid dehydrogenase (EC 1.1.1.) was isolated and characterized from the halophilic Archaeon Haloferax mediterranei. The enzyme is a dimer with a molecular mass of 101.4 +/- 3.3 kDa. It is strictly NAD-dependent and exhibits its highest activity in 4 M NaCl. The enzyme is characterized by a broad substrate specificity 2-ketoisocaproate and 2-ketobutyrate being the substrates with the higher Vmax/Km. When pyruvate and 2-ketobutyrate were the substrates the optimal pH was acidic (pH 5) meanwhile for 2-ketoisocaproate maximum activity was achieved at basic pH between 7.5 and 8.5. The optimum temperature was 52 degrees C and at 65 degrees C there was a pronounced activity decrease. This new enzyme can be used for the production of D-2-hydroxycarboxylic acid.  相似文献   

15.
The 2',3'-dialdehyde nicotinamide ribose derivatives of NAD (oNAD) and NADH (oNADH) have been prepared enzymatically from the corresponding 2',3'-dialdehyde analogs of NADP and NADPH. Pig heart NAD-dependent isocitrate dehydrogenase requires NAD as coenzyme but binds NADPH, as well as NADH, ADP, and ATP, at regulatory sites. Incubation of 1-3 mM oNAD or oNADH with this isocitrate dehydrogenase causes a time-dependent decrease in activity to a limiting value 40% that of the initial enzyme, suggesting that reaction does not occur at the catalytic coenzyme site. Upon varying the concentration of oNAD or oNADH from 0.2 to 3 mM, the inactivation rate constants increase in a nonlinear manner, consistent with reversible binding of oNAD and oNADH to the enzyme prior to covalent reaction. Inactivation is accompanied by incorporation of radioactive reagent with extrapolation to 0.54 mol [14C]oNAD or 0.45 mol [14C]oNADH/mol average enzyme subunit (or about 2 mol reagent/mol enzyme tetramer) when the enzyme is maximally inactivated; this value corresponds to the number of reversible binding sites for each of the natural ligands of isocitrate dehydrogenase. The protection against oNAD or oNADH inactivation by NADH, NADPH, and ADP (but not by isocitrate, NAD, or NADP) indicates that reaction occurs in the region of a nucleotide regulatory site. In contrast to the effects of oNAD and oNADH, oNADP and oNADPH cause total inactivation of the NAD-dependent isocitrate dehydrogenase, concomitant with incorporation, respectively, of about 3.5 mol [14C]oNADP or 1.3 mol [14C]oNADPH/mol average subunit. Reaction rates exhibit a linear dependence on [oNADP] or [oNADPH] and protection by natural ligands against inactivation is not striking. These results imply that oNADP and oNADPH are acting in this case as general chemical modifiers and indicate the importance of the free adenosine 2'-OH of oNAD and oNADH for specific labeling of the NAD-dependent isocitrate dehydrogenase. The new availability of 2',3'-dialdehyde nicotinamide ribose derivatives of NAD, NADH, NADP, and NADPH may allow selection of the appropriate reactive coenzyme analog for affinity labeling of a variety of dehydrogenases.  相似文献   

16.
The insect cell line derived from Spodoptera frugiperda (Sf9) does not express the activities of the trifunctional NADP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. The lack of synthetase activity was confirmed by the inability to incorporate radiolabeled formate into nucleotides. The cells express, instead, a Mg2+ and NAD-dependent bifunctional methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase with properties similar to the enzyme found in the mitochondria of transformed mammalian cells. In contrast, the enzyme in Sf9 cells is localized in the cytoplasm. Nutritional studies in defined medium with dialyzed serum demonstrated that the Sf9 cell does not required added purines or pyrimidines for growth. It is auxotrophic for cysteine and glycine; this latter requirement is probably due to the absence of mitochondrial serine hydroxymethyltransferase. Incorporation of labeled glycine and serine into DNA indicates that only serine is a source of one-carbon units. These results suggest that the mitochondria in Sf9 cells do not play a major role in folate-mediated metabolism.  相似文献   

17.
Eight fermentative mycoplasmas differing in genome size, deoxyribonucleic acid (DNA) base composition, or sterol dependence were examined for lactic dehydrogenase composition by spectrophotometric assay and polyacrylamide gel electrophoresis. Three completely different patterns of lactic dehydrogenase composition were found. (i) A nicotinamide adenine dinucleotide (NAD)-dependent l(+)-lactic dehydrogenase was found in Mycoplasma pneumoniae, M. gallisepticum, M. mycoides var. mycoides, mycoplasma UM 30847, M. neurolyticum, and Acholeplasma axanthum. Electrophoresis of cell-free extracts of each of these mycoplasmas produced, with the exception of M. mycoides var. mycoides and UM 30847, single, different enzyme bands. M. mycoides var. mycoides and UM 30847 were similar and formed multiple bands of enzyme activity. We were unable to establish whether these multiple bands were due to lactic dehydrogenase isoenzymes or artifacts. (ii) An NAD-dependent d(-)-lactic dehydrogenase which could not be reversed to oxidize lactate was found in M. fermentans. (iii) A. laidlawii A possessed an NAD-independent d(-)-lactic dehydrogenase capable of reducing dichlorophenol-indophenol, and an NAD-dependent l(+)-lactic dehydrogenase which is specifically activated by fructose-1,6-diphosphate. Heretofore, this enzyme regulatory mechanism was known to occur only among the Lactobacillaceae. No yeast-type lactic dehydrogenase activity was found in any of the mycoplasmas examined. The stereoisomer of lactic acid accumulated during growth correlated perfectly with the type of NAD-dependent lactic dehydrogenase found in each mycoplasma. The types of lactic dehydrogenase activity found in these mycoplasmas were not related to genome size, DNA base composition, or sterol dependence.  相似文献   

18.
All thermotolerant methanol-utilizing Bacillus spp. investigated by us possess a NAD-dependent methanol dehydrogenase (MDH) activity which is stimulated by a protein present in the soluble fraction of Bacillus sp. C1 cells. This activator protein was purified to homogeneity from Bacillus sp. C1 cells grown at a low dilution rate in a methanol-limited chemostat culture. The native activator protein (Mr = 50,000) is a dimer of Mr = 27,000 subunits. The N-terminal amino acid sequence revealed no significant similarity with any published sequences. Stimulation of MDH activity by the activator protein required the presence of Mg2+ ions. Plots of specific MDH activity versus activator protein concentration revealed Michaelis-Menten type kinetics. In the presence of activator protein, MDH displayed biphasic kinetics (v versus substrate concentration) toward C1-C4 primary alcohols and NAD. The data suggest that in the presence of activator protein plus Mg2+ ions, MDH possesses a high affinity active site for alcohols and NAD, in addition to an activator- and Mg2(+)-independent low affinity active site. The activation mechanism remains to be elucidated.  相似文献   

19.
A large-scale preparative polyacrylamide gel electrophoresis (PAGE) method that uses a 1.5- or a 2.0-cm-thick slab gel has been developed for the purification of NAD-dependent dehydrogenases. With the 2.0-cm-thick gel, a maximum volume (up to about 160 ml) of enzyme sample was applied to a gel plate, resulting in the application of a large amount of protein and enzyme. After the electrophoretic run, the enzyme band on the gel was detected by activity staining and recovered from the gel by extraction with a fairly loose-fitting glass-Teflon homogenizer. NAD-dependent alanine dehydrogenase, leucine dehydrogenase, and glycerol dehydrogenase were purified in high yields (more than 80%) by the preparative PAGE method. The method can be carried out using a simple slab gel apparatus, which is modified from the conventional analytical apparatus for the purpose of preparative PAGE under conditions used for routine analytical runs. Thus, the method may be suitable for use in purifying NAD(P)-dependent dehydrogenases and many other enzymes after conventional chromatography such as dye-ligand affinity chromatography or ion-exchange chromatography.  相似文献   

20.
The completion of the Saccharomyces cerevisiae genome project in 1996 showed that almost 60% of the potential open reading frames of the genome had no experimentally determined function. Using a conserved sequence motif present in the zinc-containing medium-chain alcohol dehydrogenases, we found several potential alcohol dehydrogenase genes with no defined function. One of these, YAL060W, was overexpressed using a multicopy inducible vector, and its protein product was purified to homogeneity. The enzyme was found to be a homodimer that, in the presence of NAD(+), but not of NADP, could catalyze the stereospecific oxidation of (2R,3R)-2, 3-butanediol (K(m) = 14 mm, k(cat) = 78,000 min(-)(1)) and meso-butanediol (K(m) = 65 mm, k(cat) = 46,000 min(-)(1)) to (3R)-acetoin and (3S)-acetoin, respectively. It was unable, however, to further oxidize these acetoins to diacetyl. In the presence of NADH, it could catalyze the stereospecific reduction of racemic acetoin ((3R/3S)- acetoin; K(m) = 4.5 mm, k(cat) = 98,000 min(-)(1)) to (2R,3R)-2,3-butanediol and meso-butanediol, respectively. The substrate stereospecificity was determined by analysis of products by gas-liquid chromatography. The YAL060W gene product can therefore be classified as an NAD-dependent (2R,3R)-2,3-butanediol dehydrogenase (BDH). S. cerevisiae could grow on 2,3-butanediol as the sole carbon and energy source. Under these conditions, a 3. 5-fold increase in (2R,3R)-2,3-butanediol dehydrogenase activity was observed in the total cell extracts. The isoelectric focusing pattern of the induced enzyme coincided with that of the pure BDH (pI 6.9). The disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions. The disrupted strain could also grow on 2,3-butanediol, although attaining a lesser cell density than the wild-type strain. Taking into consideration the substrate specificity of the YAL060W gene product, we propose the name of BDH for this gene. The corresponding enzyme is the first eukaryotic (2R, 3R)-2,3-butanediol dehydrogenase characterized of the medium-chain dehydrogenase/reductase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号