首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3883-3888
The process of transfer of vitamin A alcohol (retinol) between unilamellar vesicles of phosphatidylcholine was studied. The transfer was found to proceed spontaneously by hydration from the bilayer and diffusion through the aqueous phase. The rate-limiting step for transfer was the dissociation from the bilayer, a step that was characterized in bilayers of egg phosphatidylcholine (PC) by a rate constant koff = 0.64 s-1. The rate constant for association of retinol with bilayers of egg PC was also determined: kon = 2.9 x 10(6) s-1. The relative avidities for retinol of vesicles comprised of PC lipids with the various fatty acyl chains were measured. It was found that the binding affinity was determined by the composition of the lipids, such that PC with symmetric acyl chains had a lower affinity for retinol vs those with mixed chains. To clarify the mechanism underlying this observation, the rates of dissociation and association of retinol bound to vesicles of dioleoyl-PC were determined. The rate of association of retinol with bilayers strongly depended on the composition of the fatty acyl chains of the lipids. The rate of dissociation of retinol from the bilayers of PC was found to be independent of that composition. The implications of the observations for the interactions of hydrophobic ligands with lipid bilayers are discussed.  相似文献   

2.
Spectrophotometric titration of human serum albumin indicates that ionization of the 18 tyrosine residues takes place between pH 9 and 12.7. A Hill plot indicates that protons dissociate co-operatively from tyrosine residues, in pure albumin between pH 11.0 and 11.4 with a Hill coefficient 1.7, and in the bilirubin-albumin complex between pH 11.2 and 11.7 with a Hill coefficient 1.6. With a stopped-flow technique it is shown that about seven of the tyrosines ionize fast, with rate constants well above 10(2) s-1, when pH is suddenly changed from near neutral to pH 11.76. Further residues ionize slowly, with rate constants around 10(2) s-1 or less. The N-form of albumin (pH 6) contains one more fast ionizing tyrosine than the B-form of albumin (pH 10). Binding of bilirubin or laurate to the albumin molecule (molar ratio 1:1) transforms one to three of the fast ionizing tyrosines to slowly ionizing.  相似文献   

3.
Cupp D  Kampf JP  Kleinfeld AM 《Biochemistry》2004,43(15):4473-4481
Understanding the mechanism that governs the transport of long chain free fatty acids (FFA) across lipid bilayers is critical for understanding transport across cell membranes. Conflicting results have been reported for lipid vesicles; most investigators report that flip-flop occurs within the resolution time of the method (<5 ms) and that dissociation from the membrane is rate limiting, while other studies find that flip-flop is rate limiting and on the order of seconds. We have reinvestigated this problem and find that the methods used in studies reporting rapid flip-flop have not been interpreted correctly. We find that accurate information about transport of FFA across lipid vesicles requires that FFA be delivered to the vesicles as complexes with albumin (BSA). For example, we find that stopped-flow mixing of uncomplexed FFA with small unilamellar vesicles (SUV) containing pyranine yields the very fast influx rates reported previously (>100 s(-1)). However, these influx rates increase linearly with lipid vesicle concentration and can therefore not, as previously interpreted, represent flip-flop. In contrast, measurements of influx rates in SUV and giant unilamellar vesicles performed with oleate-BSA complexes reveal no dependence on vesicle concentration and yield influx rate constants of approximately 4 and approximately 0.5 s(-1), respectively. Rate constants for efflux and dissociation were determined from the transfer of oleate from vesicles to BSA and reveal similar influx and efflux but dissociation rate constants that are approximately 5-10-fold greater. We conclude that flip-flop is rate limiting for transport of FFA across lipid vesicles and slows with an increasing radius of curvature. These results, in contrast to those reporting that flip-flop is extremely fast, indicate that the lipid bilayer portion of biological membranes may present a significant barrier to transport of FFA across cell membranes.  相似文献   

4.
Interactions of porphyrins with nucleic acids   总被引:24,自引:0,他引:24  
The interactions of nucleic acids with water-soluble porphyrins and metalloporphyrins have been investigated by stopped-flow and temperature-jump techniques. Both natural DNA (calf thymus) and synthetic homopolymers [poly(dG-dC) and poly(dA-dT)] have been employed. The porphyrins studied belong to the tetrakis(4-N-methylpyridyl)porphine (H2TMpyP-4) series and can be divided into two groups: (i) those which have no axial ligands when bound to nucleic acids [e.g., Ni(II), Cu(II), and the nonmetallic derivatives] and (ii) those which maintain axial ligands upon binding [e.g., Mn(III), Fe(III), Co(III), and Zn(II) derivatives]. The reaction of both axially and nonaxially liganded porphyrins at AT sites is too rapid to be measured by the kinetic methods utilized, whereas at GC sites the interaction of the nonaxially liganded porphyrins is in the millisecond time range and can be monitored by both stopped-flow and temperature-jump techniques. These results corroborate previous static studies, utilizing visible spectroscopy and circular dichroism, which indicate that the formation of an intercalated complex occurs only at GC base pair sites with porphyrins which do not possess axial ligands. With all the porphyrins investigated, the complexes formed at AT sites are envisioned as being of an "external" type involving some degree of overlap between the porphyrin and the bases of the duplex. In relaxation experiments of poly-(dG-dC) with H2TMpyP-4, a large, reproducible effect is observed which can be analyzed as a single exponential. Rate constants for association and dissociation of the H2TMpyP-4/poly(dG-dC) complex are 3.7 X 10(5) M-1 s-1 and 1.8 s-1, respectively. Relaxation studies of mixtures of poly(dA-dT) and poly(dG-dC) with H2TMpyP-4 indicate that the transfer of the porphyrin from one homopolymer to another occurs via a mechanism involving dissociation rather than direct transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Kinetics and mechanism of bilirubin binding to human serum albumin   总被引:3,自引:0,他引:3  
The kinetics of bilirubin binding to human serum albumin at pH 7.40, 4 degrees C, was studied by monitoring changes in bilirubin absorbance. The time course of the absorbance change at 380 nm was complex: at least three kinetic events were detected including the bimolecular association (k1 = 3.8 +/- 2.0 X 10(7) M-1 S-1) and two relaxation steps (52 = 40.2 +/- 9.4 s-1 and k3 = 3.8 +/- 0.5 s-1). The presence of the two slow relaxations was confirmed under pseudo-first order conditions with excess albumin. Curve-fitting procedures allowed the assignment of absorption coefficients to the intermediate species. When the bilirubin-albumin binding kinetics was observed at 420 nm, only the two relaxations were seen; apparently the second order association step was isosbestic at this wavelength. The rate of albumin-bound bilirubin dissociation was measured by mixing the pre-equilibrated human albumin-bilirubin complex with bovine albumin. The rate constant for bilirubin dissociation measured at 485 nm was k-3 = 0.01 s-1 at 4 degrees C. A minimum value of the equilibrium constant for bilirubin binding to human albumin determined from the ratio k1/k-3 is therefore approximately 4 X 10(9) M-1.  相似文献   

6.
Dissociation kinetics of parvalbumin complexes with calcium and magnesium ions were studied by means of stopped-flow method employing intrinsic protein fluorescence registration. In the temperature range from 10 to 30 degrees C the kinetic curves of Ca2+ and Mg2+ dissociation are best fitted with a sum of two exponential terms, each term is ascribed to a dissociation process in one of two bindings sites of parvalbumin. Dissociation rate constants in this temperature range increase from 0.03 to 0.8 s-1 and from 0.18 to 5 s-1 for Ca2+, and from 0.9 to 4.5 s-1 and from 4 to 33 s-1 for Mg2+. Parvalbumin equilibrium binding constants of Ca2+ and Mg2+ were also measured in the same temperature range. It makes possible to estimate the rate constants of association of Ca2+ and Mg2+. In the case of Ca2+ the rate of association approaches the diffusion controlled limit.  相似文献   

7.
The apoproteins (apo) C-I, C-II, and C-III are low molecular weight amphiphilic proteins that are associated with the lipid surface of the plasma chylomicron, very low density lipoprotein (VLDL), and high-density lipoprotein (HDL) subfractions. Purified apoC-I spontaneously reassociates with VLDL, HDL, and single-bilayer vesicles (SBV) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. ApoC-I also transfers reversibly from VLDL to HDL and from VLDL and HDL to SBV. The kinetics of association of the individual apoC proteins with SBV are second order overall and first order with respect to lipid and protein concentrations. At 37 degrees C, the rates of association were 2.5 x 10(10), 4.0 x 10(10) and 3.8 x 10(10) M-1 s-1 for apoC-I, apoC-II, and apoC-III, respectively. Arrhenius plots of association rate vs temperature were linear and yielded activation energies of 11.0 (apoC-I), 9.0 (apoC-II), and 10.6 kcal/mol (apoC-III). The kinetics of vesicle to vesicle apoprotein transfer are biexponential for intermembrane transfer, indicating two concurrent transfer processes. Rate constants at 37 degrees C for the fast component of dissociation were 11.7, 9.5, and 9.9 s-1, while rate constants for the slow component were 1.3, 0.6, and 0.9 s-1 for apoC-I, apoC-II, and apoC-III, respectively. The dissociation constants, Kd, of apoC-I, apoC-II, and apoC-III bound to the surface monolayer of phospholipid-coated latex beads were 0.5, 1.4, and 0.5 microM, respectively. These studies show that the apoC proteins are in dynamic equilibrium among phospholipid surfaces on a time scale that is rapid compared to lipolysis, lipid transfer, and lipoprotein turnover.  相似文献   

8.
A method for determining individual rate constants for nucleotide binding to and dissociation from membrane bound pig kidney Na,K-ATPase is presented. The method involves determination of the rate of relaxation when Na,K-ATPase in the presence of eosin is mixed with ADP or ATP in a stopped-flow fluorescence apparatus. It is shown that the nucleotide dependence of this rate of relaxation--taken together with measured equilibrium binding values for eosin and ADP--makes possible a reasonably reliable determination of the rate constant for dissociation of nucleotide, i.e., determination of the rate constant k-1 in the following model (where E denotes Na,K-ATPase): [formula: see text] All experiments are carried out at about 4 degrees C in a buffer containing 200 mM sucrose, 10 mM EDTA, 25 mM Tris and 73 mM NaCl (pH 7.4). Values obtained for the rate constants for dissociation are about 6 s-1 for ADP and 2-3 s-1 for ATP.  相似文献   

9.
Nitric-oxide synthase (NOS) catalyzes conversion of L-arginine to nitric oxide, which subsequently stimulates a host of physiological processes. Prior work suggests that NOS is inhibited by NO, providing opportunities for autoregulation. This contribution reports that NO reacts rapidly (ka congruent with 2 x 10(7) M-1 s-1) with neuronal NOS in both its ferric and ferrous oxidation states. Association kinetics are almost unaffected by L-arginine or the cofactor tetrahydrobiopterin. There is no evidence for the distinct two phases previously reported for association kinetics of CO. Small amounts of geminate recombination of NO trapped in a protein pocket can be observed over nanoseconds, and a much larger amount is inferred to take place at picosecond time scales. Dissociation rates are also very fast from the ferric form, in the neighborhood of 50 s-1, when measured by extrapolating association rates to the zero NO concentration limit. Scavenging experiments give dissociation rate constants more than an order of magnitude slower: still quite fast. For the ferrous species, extrapolation is not distinguishable from zero, while scavenging experiments give a dissociation rate constant near 10(-4) s-1. Implications of these results for interactions near the heme binding site are discussed.  相似文献   

10.
S M Dunn  R W King 《Biochemistry》1980,19(4):766-773
The kinetics of ligand binding to dihydrofolate reductase from Lactobacillus casei (MTX/R) to form the ternary enzyme-inhibitor-coenzyme complex have been investigated by the stopped-flow fluorescence technique. The fluorescence changes observed when coenzymes or inhibitors bind to the binary complex of the enzyme with the complementary ligand occur in a single fast phase. Under pseudo-first-order conditions the reaction traces could be fitted with precision to a single-exponential decay, and apparent bimolecular rate constants in the range 2 x 10(6) to 3 x 10(7) M-1s-1 have been measured assuming a bimolecular-unimolecular model. The kinetic constants obtained suggest that prior binding of an inhibitor to the enzyme may, to a minor extent, interfere with coenzyme binding but the rates of inhibitor binding seem to be unaffected by the presence of a bound coenzyme. Dissociation rate constants appear to be less than 1 s-1 which suggests that both coenzymes and inhibitors are tightly bound in the ternary complex. An investigation of the effects of pH on the kinetics of ternary complex formation indicated the involvement of ionizable groups in ligand binding, but this shows some ligand dependence. The rates of ligand bindings to form the ternary complex are fairly high, but it is unlikely that these associations are diffusion controlled because their measured activation energies of 7.8-14.5 kcal mol-1 are higher than expected from reactions whose rates are limited by diffusion in aqeous solution.  相似文献   

11.
The rates of dissociation of 2 equiv of various metal ions [Ca(II), Cd(II), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III)] from the primary CD and EF metal ion binding sites of parvalbumin (isotype pI = 4.75) from codfish (Gadus callarius L) were measured by stopped-flow techniques. The removal or replacement of metal ions was monitored by changes in sensitized Tb(III) luminescence or in intrinsic protein tryptophan fluorescence as quenching ions [Eu(III) or Yb(III)] were bound or removed or as the apoprotein was formed. In experiments wherein the bound metal ions were removed by mixing the parvalbumin with an excess of 1,2-diaminocyclohexanetetraacetic acid (DCTA), the kinetic traces were best fit by a double exponential with koff rate constants of 1.07 and 5.91 s-1 for Ca(II), 1.54 and 10.5 s-1 for Cd(II), and approximately 0.05 and approximately 0.5 s-1 for all of the trivalent lanthanide ions. In experiments wherein the bound metal ions were exchanged with an excess of a different metal ion, pseudo-first-order rate constants were proportional to the concentration of excess attacking metal ion for both the fast and slow processes in most experiments. In these cases, extrapolation of the rate constants to zero concentration of attacking metal ion gave values which agree well with the DCTA scavenging results. This finding demonstrates that the off rate constants do not depend on the occupancy of the neighboring site and therefore implies that there is no significant cooperativity in metal ion binding between the two sites in parvalbumin.  相似文献   

12.
The kinetics of Ca2+ dissociation from fluo-3 was measured using stopped flow fluorimetry. Analysis of dissociation revealed, in contrast to other commonly used fluorescent Ca2+ indicators, a biexponential behaviour with two distinct dissociation rates of 550 s-1 and 200 s-1 at physiological pH and room temperature. The dissociation rate constant of the fast phase increases to 700 s-1 at physiological temperature, whereas that of the slow phase does not change markedly. While the rate constants do not depend on pH between 6.6 and 7.8, the dissociation turns out to be monoexponential at pH 5.86. The association rate of Ca2+ to fluo-3 could not be measured within the mixing dead time and is estimated to be above 10(9) M-1 s-1. Since the rate constants of fluo-3 are larger than those of other fluorescent Ca2+ indicators, fluo-3 is well suited for investigations of Ca2+ oscillations in biological systems.  相似文献   

13.
The rates of formation of a number of metallocarboxypeptidases from metal ions and bovine apocarboxypeptidase A (CPA) have been measured directly and by a competitive method. Rates were determined with pH = 6-8 by utilising the pH change attending metal-ion incorporation, employing indicator and stopped-flow. Second-order rate constants Kf, M-1 s-1 at 25 degrees C, I = 1 M NaCl, pH = 7, Tris = 25 micrometer) were 1.7 X 10(5) (Mn2+), 3 X 10(4) (Co2+), 5 X 10(3) (Ni2+), 7 X 10(5) Zn2+), and 9 X 10(5) (Cd2+). Relative incorporation rate constants were determined at 25 degrees, pH = 7.0, Tris = 0.1 M, by competing two metal ions for a deficiency of apoprotein and analyzing the products by differential enzyme activity. Agreement between the two methods was reasonable. Rate constants for dissociation of CoCPA, NiCPA, and ZnCPA were measured by loss of enzyme activity on addition of the metal ion scavenger EDTA. Values of kd at 25 degrees, I = 1.0 M NaCl, pH = 7.0 were 8 X 10(-3), 3 X 10(-5), and 4 X 10(-4) s(-1), respectively. Values of K obtained kinetically (kf/kd) were in good agreement with those determined by activity measurements of equilibrated solutions. Results are compared with those of bovine apocarbonic anhydrase, where generally significantly slower rates are encountered.  相似文献   

14.
We have studied the kinetics of binding of the menaquinol analog 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) by fumarate reductase (FrdABCD) using the stopped-flow method. The results show that the fluorescence of HOQNO is quenched when HOQNO binds to FrdABCD. The observed quenching of HOQNO fluorescence has two phases and it can be best fitted to a double exponential equation. A two-step equilibrium model is applied to describe the binding process in which HOQNO associates with FrdABCD by a fast bimolecular step to form a loosely bound complex; this is subsequently converted into a tightly bound complex by a slow unimolecular step. The rates of the forward and the reverse reactions for the first equilibrium (k1 and k2) are determined to be k1 = (1.1 +/- 0.1) x 10(7) M-1.s-1, and k2 = 6.0 +/- 0.6 s-1, respectively. The dissociation constants of the first equilibrium (Kd1 = k2/k1) is calculated to be about 550 nM. The overall dissociation constant for the two-step equilibrium, Kd overall = Kd1/[1+ (1/Kd2)], is estimated to be < or = 7 nM. Comparison of the kinetic parameters of HOQNO binding by FrdABCD and by dimethyl sulfoxide reductase provides important information on menaquinol binding by these two enzymes.  相似文献   

15.
The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 X 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 X 10(4)M-1-s-1 and 1.6 X 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.  相似文献   

16.
Mechanism of hepatocellular uptake of albumin-bound bilirubin   总被引:1,自引:0,他引:1  
We previously demonstrated that unconjugated bilirubin spontaneously diffuses through phospholipid bilayers at a rate which exceeds albumin dissociation, suggesting that solvation from albumin represents the rate-limiting step in hepatic bilirubin clearance. To further examine this hypothesis, we studied the uptake of bovine serum albumin (BSA)-bound bilirubin by cultured hepatoblastoma (HepG2) cells. Uptake of bilirubin was saturable, with a K(m) and V(max) of 4.2+/-0.5 microM (+/-S.E.M.) and 469+/-41 pmol min(-1) mg(-1) at 25 degrees C. Substantial bilirubin uptake also was observed at 4 degrees C (K(m)=7.0+/-0.8 microM, V(max)=282+/-26 pmol min(-1) mg(-1)), supporting a diffusional transport mechanism. Consistent with reported solvation rates, the cellular uptake of bilirubin bound to human serum albumin was more rapid than for BSA-bound bilirubin, indicative of dissociation-limited uptake. Counterintuitively, an inverse correlation between pH and the rate of bilirubin flip-flop was observed, due to pH effects on the rate of dissociation of bilirubin from albumin and from the membrane bilayer. The identification of an inflection point at pH 8.1 is indicative of a pK(a) value for bilirubin in this range. Taken together, our data suggest that hepatocellular uptake of bilirubin is dissociation-limited and occurs principally by a mechanism involving spontaneous transmembrane diffusion.  相似文献   

17.
We have measured the intrinsic CO dissociation rates from the subunits of the human hemoglobin tetramers (alpha CO beta NO)2 and (alpha NO beta CO)2 using microperoxidase and a stopped-flow spectrophotometer. The dissociation of NO is negligible. The rate constants for the and the subunits are similar (0.014 s-1 vs. 0.011 s-1, respectively, at pH 7, 20 C; and 0.016 s-1 for both in the presence of inositol hexaphosphate), indicating that they are equivalent in the first step of the CO dissociation. Therefore, the chain unequality observed in the third and fourth steps (Samaja, M., Rovida, E., Niggeler, M., Perrella, M., and Rossi-Bernardi, L. (1987). J. Biol. Chem.: 262, 4528-4533) are not due to the intrinsic properties of the subunits, but to the conformational state of the molecule.  相似文献   

18.
Kinetic studies of calcium and magnesium binding to troponin C   总被引:4,自引:0,他引:4  
The kinetic mechanism of calcium binding was investigated for the high-affinity calcium-magnesium sites of troponin C (TN-C), for the C-terminal fragment containing only the high-affinity sites (TR2) and for the TN-C:TN-I (where TN-I represents the inhibitory subunit of troponin) complex. Rate constants were measured by the change in fluorescence of the proteins labeled with 4-(N-iodoacetoxyethyl-N-methyl-7-nitrobenz-2-oxa-1,3-diazole at Cys 98. Rate constants for calcium dissociation were also measured using the fluorescent calcium chelating agent quin 2. Calcium binding to TR2 at 4 degrees C is a two-step process at each binding site. (formula; see text) A first order transition (k1 = 700 s-1) follows the formation of a weakly bound collision complex (K0 = 2.5 X 10(3) M-1). The two sits of the labeled protein are distinguishable because of a 2-4-fold difference in rate constants of calcium dissociation. The kinetic evidence is consistent with additive changes in structure induced by calcium binding to two identical or nearly identical high-affinity sites. The mechanism for TN-C:TN-I is similar to TR2. TN-C gave complex kinetic behavior for calcium binding but calcium dissociation occurred with the same rate constants found for TR2. Calcium binding to the high-affinity sites of TnC can be interpreted by the same mechanism as for TR2 but an additional reaction possibly arriving from calcium binding to the low-affinity sites leads to a high-fluorescence intermediate state which is detected by the fluorophore. The interactions between the two classes of sites are interpreted by a model in which calcium binding at the high-affinity sites reverses the fluorescence change induced by calcium binding at the low-affinity sites. Magnesium binding to the calcium-magnesium sites of TR2 and TN-C occurs by the same two-step binding mechanism with a smaller value for K0 and a 5-fold larger rate constant of dissociation.  相似文献   

19.
Sato S  Kuhlman B  Wu WJ  Raleigh DP 《Biochemistry》1999,38(17):5643-5650
The folding and unfolding behavior of the multidomain ribosomal protein L9 from Bacillus stearothermophilus was studied by a novel combination of stopped-flow fluorescence and nuclear magnetic resonance (NMR) spectroscopy. One-dimensional 1H spectra acquired at various temperatures show that the C-terminal domain unfolds at a lower temperature than the N-terminal domain (Tm = 67 degrees C for the C-terminal domain, 80 degrees C for the N-terminal domain). NMR line-shape analysis was used to determine the folding and unfolding rates for the N-terminal domain. At 72 degrees C, the folding rate constant equals 2980 s-1 and the unfolding rate constant equals 640 s-1. For the C-terminal domain, saturation transfer experiments performed at 69 degrees C were used to determine the folding rate constant, 3.3 s-1, and the unfolding rate constant, 9.0 s-1. Stopped-flow fluorescence experiments detected two resolved phases: a fast phase for the N-terminal domain and a slow phase for the C-terminal domain. The folding and unfolding rate constants determined by stopped-flow fluorescence are 760 s-1 and 0.36 s-1, respectively, for the N-terminal domain at 25 degrees C and 3.0 s-1 and 0.0025 s-1 for the C-terminal domain. The Chevron plots for both domains show a V-shaped curve that is indicative of two-state folding. The measured folding rate constants for the N-terminal domain in the intact protein are very similar to the values determined for the isolated N-terminal domain, demonstrating that the folding kinetics of this domain is not affected by the rest of the protein. The remarkably different rate constants between the N- and C-terminal domains suggest that the two domains can fold and unfold independently. The folding behavior of L9 argues that extremely rapid folding is not necessarily functionally important.  相似文献   

20.
Nuclear magnetic relaxation methods were used to investigate the interaction of the inhibitor succinate with aspartate transcarbamylase from Escherichia coli. Over the pH range 7 to 9, the dissociation constant for succinate remains less than the inhibitor concentration used for most of this work (0.05 M). As a result, the enzyme predominantly exists in a single "gross" conformational state. Succinate binding to this enzyme state (generally known as the R form) parallels the behavior seen previously with the isolated catalytic subunit (Beard, C. B., and Schmidt, P.G. (1973) Biochemistry 12, 2255-2264). The pH and temperature dependence of succinate proton relaxation rates, 1/T2 - 1/T1, in the presence of carbamyl phosphate, is interpreted in terms of a binding mechanism involving three forms of the enzyme, differing by their states of protonation. The least protonated form of the enzyme does not interact with succinate, the singly protonated species binds succinate to form a rapidly dissociating complex, and the doubly protonated species undergoes a conformational isomerization upon succinate binding, yielding a slow exchange complex. Relaxation data provide sufficient information to determine pKa values of 7.2 and 8.9 for two ionizing groups, as well as the dissociation constant for succinate in the fast exchange complex, Kd =1.6 X 10(-2) M. Rate constants for the forward and reverse steps of the isomerization, 1.3 X 10(3) s-1 and 33 s-1, respectively, indicate a significantly slower reverse rate from that obtained in the earlier NMR study of the isolated catalytic subunit. In experiments where the succinate concentration was varied, the relaxation rates showed sigmoidal binding of that ligand to the fast exchange complex above pH 9.1, (a) indicating cooperative binding of succinate, and (b) suggesting that above pH 9.1, the system cannot be characterized by a single dissociation constant, ionization constant, or relaxation effect. CTP and ATP were tested for their ability to affect succinate binding to the fast exchange complex. Heterotropic interactions were observed for CTP but not for ATP. Addition of low concentrations of the transition state analog N-(phosphonacetyl)-L-aspartate to the enzyme-carbamyl phosphate-succinate complex sharply decreased the relaxation rate, indicating that the measurements are sensitive only to succinate bound specifically to the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号