首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the participation of endogenous ADP-ribosylation factor (ARF) nucleotide-binding site opener (ARNO) in desensitization of the luteinizing hormone/choriogonadotropin (LH/CG) receptor, independent of receptor internalization, using a cell-free plasma membrane model. We recently showed that the addition of recombinant ARNO promotes binding of beta-arrestin1 to the third intracellular (3i) loop of the active LH/CG receptor, thereby reducing the ability of the receptor to activate the stimulatory G protein and signal to adenylyl cyclase. In the present report we determined whether ARNO is detectable in follicular membranes and whether the catalytically inactive E156K ARNO mutant, containing a mutation in the Sec7 domain, can act in a dominant negative manner to block LH/CG receptor desensitization. Results show that ARNO is readily detected in follicular membranes and that levels of membrane-associated ARNO increase with follicular maturation. The addition of catalytically inactive E156K ARNO blocks both the release of beta-arrestin1 from its membrane docking site, based on Western blot analysis, and development of LH/CG receptor desensitization. We also investigated whether a point mutation in the pleckstrin homology (PH) domain of ARNO (R280D), which blocks binding of phosphoinositides like phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 4,5-bisphosphate (PIP(2)) but not catalytic activity, disrupts LH/CG receptor desensitization. R280D ARNO neither promotes nor inhibits LH/CG receptor desensitization, consistent with a requirement of the PH domain of ARNO for its association with the plasma membrane. LH/CG receptor activation of ARNO is not mediated by activation of phosphatidylinositol 3-kinase (PI 3-kinase) or by G protein beta gamma subunits. Taken together, these results suggest that LH/CG receptor promotes beta-arrestin1 release from its membrane docking site to bind to the 3i loop of the LH/CG receptor via activation of membrane delimited endogenous ARNO. As ARNO activation is independent of PI 3-kinase and G beta gamma, our results are consistent with a role for PIP(2) in receptor-stimulated ARNO activation.  相似文献   

2.
Arrestin2 binding to the active but unphosphorylated luteinizing hormone/choriogonadotropin receptor (LH/CG R) in ovarian follicles is triggered by activation of ADP-ribosylation factor 6 (ARF6) and leads to uncoupling of this receptor from cAMP signaling. We sought to determine how arrestin2 binds to LH/CG R, if binding is of high affinity, and if the receptor also binds arrestin3. Desensitization of intact LH/CG R was equally sensitive to ectopic constructs of arrestin2 that bind other G protein-coupled receptors (GPCRs) either in a phosphorylation-independent or -dependent manner. Intact LH/CG R was not desensitized by ectopic arrestin3 constructs. Surface plasmon resonance studies showed that arrestin2 bound a synthetic third intracellular (3i) LH/CG R loop peptide with picomolar affinity; arrestin3 bound with millimolar affinity. To determine whether Asp-564 in the 3i loop mimicked the phosphorylated residue of other GPCRs, human embryonic kidney (HEK) cells were transfected with wild-type (WT) and D564G LH/CG R. An agonist-stimulated ARF6-dependent arrestin2 undocking pathway to drive desensitization of WT receptor was recapitulated in HEK cell membranes, and ectopic arrestin2 promoted desensitization of WT LH/CG R. However, D564G LH/CG R in HEK cells was not desensitized, and synthetic 3i D564G peptide did not bind arrestin2. Synthetic 3i loop peptides containing D564E, D564V, or D564N also did not bind arrestin2. We conclude that the ARF6-mediated mechanism to release a pool of membrane-delimited arrestin to bind GPCRs may be a widespread mechanism to deliver arrestin to GPCRs for receptor desensitization. Unlike other GPCRs that additionally require receptor phosphorylation, LH/CG R activation is sufficient to expose a conformation in which Asp-564 in the 3i loop confers high affinity binding selectively to arrestin2.  相似文献   

3.
The luteinizing hormone/choriogonadotropin hormone receptor (LH/CG R) signals to regulate ovulation, corpus luteum formation, and fetal survival during pregnancy. Agonist binding to the LH/CG R is poorly reversible, emphasizing the importance of a cellular mechanism to temper signaling by a potentially persistently active receptor. Like other G protein-coupled receptors (GPCRs), signaling by this receptor is modulated by its binding of an arrestin. We have identified ADP ribosylation factor 6 (ARF6) as a protein whose activation state is regulated by the LH/CG R and which functions to regulate the availability of plasma membrane-docked arrestin 2 to this receptor. We hypothesize that ARF6 might also serve GPCRs other than the LH/CG R to regulate the availability of arrestin 2 for receptor desensitization.  相似文献   

4.
In the developing nervous system, controlled neurite extension and branching are critical for the establishment of connections between neurons and their targets. Although much is known about the regulation of axonal development, many of the molecular events that regulate axonal extension remain unknown. ADP-ribosylation factor nucleotide-binding site opener (ARNO) and ADP-ribosylation factor (ARF)6 have important roles in the regulation of the cytoskeleton as well as membrane trafficking. To investigate the role of these molecules in axonogenesis, we expressed ARNO and ARF6 in cultured rat hippocampal neurons. Expression of catalytically inactive ARNO or dominant negative ARF6 resulted in enhanced axonal extension and branching and this effect was abrogated by coexpression of constitutively active ARF6. We sought to identify the downstream effectors of ARF6 during neurite extension by coexpressing phosphatidyl-inositol-4-phosphate 5-Kinase alpha [PI(4)P 5-Kinase alpha] with catalytically inactive ARNO and dominant negative ARF6. We found that PI(4)P 5-Kinase alpha plays a role in neurite extension and branching downstream of ARF6. Also, expression of inactive ARNO/ARF6 depleted the actin binding protein mammalian ena (Mena) from the growth cone leading edge, indicating that these effects on axonogenesis may be mediated by changes in cytoskeletal dynamics. These results suggest that ARNO and ARF6, through PI(4)P 5-Kinase alpha, regulate axonal elongation and branching during neuronal development.  相似文献   

5.
In activated neutrophils NADPH oxidase is regulated through various signaling intermediates, including heterotrimeric G proteins, kinases, GTPases, and phospholipases. ADP-ribosylation factor (ARF) describes a family of GTPases associated with phospholipase D (PLD) activation. PLD is implicated in NADPH oxidase activation, although it is unclear whether activation of PLD by ARF is linked to receptor-mediated oxidase activation. We explored whether ARF participates in NADPH oxidase activation by formyl-methionine-leucine-phenylalanine (fMLP) and whether this involves PLD. Using multicolor forward angle light scattering analyses to measure superoxide production in differentiated neutrophil-like PLB-985 cells, we tested enhanced green fluorescent fusion proteins of wild-type ARF1 or ARF6, or their mutant counterparts. The ARF6(Q67L) mutant defective in GTP hydrolysis caused increased superoxide production, whereas the ARF6(T27N) mutant defective in GTP binding caused diminished responses to fMLP. The ARF1 mutants had no effect on fMLP responses, and none of the ARF proteins affected phorbol 12-myristate 13-acetate-elicited oxidase activity. PLD inhibitors 1-butanol and 2, 3-diphosphoglycerate, or the ARF6(N48R) mutant assumed to be defective in PLD activation, blocked fMLP-elicited oxidase activity in transfected cells. The data suggest that ARF6 but not ARF1 modulates receptor-mediated NADPH oxidase activation in a PLD-dependent mechanism. Because PMA-elicited NADPH oxidase activation also appears to be PLD-dependent, but ARF-independent, ARF6 and protein kinase C may act through distinct pathways, both involving PLD.  相似文献   

6.
ARF1 and ARF6 are distant members of the ADP-ribosylation factor (ARF) small G-protein subfamily. Their distinct cellular functions must result from specificity of interaction with different effectors and regulators, including guanine nucleotide exchange factors (GEFs). ARF nucleotide-binding site opener (ARNO), and EFA6 are analogous ARF-GEFs, both comprising a catalytic "Sec7" domain and a pleckstrin homology domain. In vivo ARNO, like ARF1, is mostly cytosolic, with minor localizations at the Golgi and plasma membrane; EFA6, like ARF6, is restricted to the plasma membrane. However, depending on conditions, ARNO appears active on ARF6 as well as on ARF1. Here we analyze the origin of these ARF-GEF selectivities. In vitro, in the presence of phospholipid membranes, ARNO activates ARF1 preferentially and ARF6 slightly, whereas EFA6 activates ARF6 exclusively; the stimulation efficiency of EFA6 on ARF6 is comparable with that of ARNO on ARF1. These selectivities are determined by the GEFs Sec7 domains alone, without the pleckstrin homology and N-terminal domains, and by the ARF core domains, without the myristoylated N-terminal helix; they are not modified upon permutation between ARF1 and ARF6 of the few amino acids that differ within the switch regions. Thus selectivity for ARF1 or ARF6 must depend on subtle folding differences between the ARFs switch regions that interact with the Sec7 domains.  相似文献   

7.
Two distinct populations of ARF bound to Golgi membranes   总被引:21,自引:10,他引:11       下载免费PDF全文
ADP-ribosylation factor (ARF) is a small molecular weight GTP-binding protein (20 kD) and has been implicated in vesicular protein transport. The guanine nucleotide, bound to ARF protein is believed to modulate the activity of ARF but the mechanism of action remains elusive. We have previously reported that ARF binds to Golgi membranes after Brefeldin A-sensitive nucleotide exchange of ARF-bound GDP for GTP gamma S. Here we report that treatment with phosphatidylcholine liposomes effectively removed 40-60% of ARF bound to Golgi membranes with nonhydrolyzable GTP, presumably by competing for binding of activated ARF to lipid bilayers. This revealed the presence of two different pools of ARF on Golgi membranes. Whereas total ARF binding did not appear to be saturable, the liposome-resistant pool is saturable suggesting that this pool of ARF is stabilized by interaction with a Golgi membrane-component. We propose that activation of ARF by a guanine nucleotide-exchange protein results in association of myristoylated ARF GTP with the lipid bilayer of the Golgi apparatus. Once associated with the membrane, activated ARF can diffuse freely to associate stably with a target protein or possibly can be inactivated by a GTPase activating protein (GAP) activity.  相似文献   

8.
Activation of adenylyl cyclase by cholera toxin A subunit (CT-A) results from the ADP-ribosylation of the stimulatory guanine nucleotide binding protein (GS alpha). This process requires GTP and an endogenous guanine nucleotide binding protein known as ADP-ribosylation factor (ARF). One membrane (mARF) and two soluble forms (sARF I and sARF II) of ARF have been purified from bovine brain. Because the conditions reported to enhance the binding of guanine nucleotides by ARF differ from those observed to promote optimal activity, we sought to characterize the determinants influencing the functional interaction of guanine nucleotides with ARF. High-affinity GTP binding by sARF II (apparent KD of approximately 70 nM) required Mg2+, DMPC, and sodium cholate. sARF II, in DMPC/cholate, also enhanced CT-A ADP-ribosyltransferase activity (apparent EC50 for GTP of approximately 50 nM), although there was a delay before achievement of a maximal rate of sARF II stimulated toxin activity. The delay was abolished by incubation of sARF II with GTP at 30 degrees C before initiation of the assay. In contrast, a maximal rate of activation of toxin by sARF II, in 0.003% SDS, occurred without delay (apparent EC50 for GTP of approximately 5 microM). High-affinity GTP binding by sARF II was not detectable in SDS. Enhancement of CT-A ADP-ribosyltransferase activity by sARF II, therefore, can occur under conditions in which sARF II exhibits either a relatively low affinity or a relatively high affinity for GTP. The interaction of GTP with ARF under these conditions may reflect ways in which intracellular membrane and cytosolic environments modulate GTP-mediated activation of ARF.  相似文献   

9.
G protein-coupled receptors can potentially activate phospholipase D (PLD) by a number of routes. We show here that the native M3 muscarinic receptor in 1321N1 cells and an epitope-tagged M3 receptor expressed in COS7 cells substantially utilize an ADP-ribosylation factor (ARF)-dependent route of PLD activation. This pathway is activated at the plasma membrane but appears to be largely independent of G, phospholipase C, Ca2+ q/11, protein kinase C, tyrosine kinases, and phosphatidyl inositol 3-kinase. We report instead that it involves physical association of ARF with the M3 receptor as demonstrated by co-immunoprecipitation and by in vitro interaction with a glutathione S-transferase fusion protein of the receptor's third intracellular loop domain. Experiments with mutant constructs of ARF1/6 and PLD1/2 indicate that the M3 receptor displays a major ARF1-dependent route of PLD1 activation with an additional ARF6-dependent pathway to PLD1 or PLD2. Examples of other G protein-coupled receptors assessed in comparison display alternative pathways of protein kinase C- or ARF6-dependent activation of PLD2.  相似文献   

10.
ADP-ribosylation factors (ARFs) are highly conserved approximately 20-kDa guanine nucleotide-binding proteins that were first identified based on their ability to stimulate the cholera toxin-catalyzed ADP-ribosylation of Gs alpha and thus activate adenylyl cyclase. Proteins with ARF activity have been characterized from different mammalian tissues and exhibited different requirements for activity, stability, and phospholipid. Based on molecular cloning and mRNA distribution, at least six mammalian ARFs, which fall into three classes, have been identified. To test whether individual ARFs might have different requirements for optimal activity, as judged by their ability to enhance cholera toxin ADP-ribosyltransferase activity, four ARFs from classes I, II, and III were produced as recombinant proteins in Escherichia coli and characterized. Recombinant bovine ARF 2 (rARF 2) and human ARF 3 (rARF 3) (class I), human ARF 5 (rARF 5, class II), and human ARF 6 (rARF 6, class III) differed in the effects of phospholipid and detergent on their ability to enhance cholera toxin activity; rARFs 2, 3, and 5 required dimyristoylphosphatidylcholine (DMPC) and cholate, whereas rARF 6 did not require phospholipid/detergent for activity. Further characterization of two of the more divergent ARFs (ARFs 2 and 6) showed that both exhibited guanosine 5'-O-(3-thio)triphosphate binding which was enhanced by DMPC/cholate. In the transferase assay, rARF 2 required approximately 4 microM GTP for half-maximal stimulation of toxin activity, whereas rARF 6 required 0.05 microM GTP. rARF 6 exhibited a delay in activation of toxin not detected with rARF 2 that may be related to a requirement for guanine nucleotide exchange and/or GTP binding. These findings are consistent with the conclusion that the highly conserved members of the ARF family have different requirements for optimal activity.  相似文献   

11.
ARL4D is a developmentally regulated member of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of Ras-related GTPases. Although the primary structure of ARL4D is very similar to that of other ARF/ARL molecules, its function remains unclear. Cytohesin-2/ARF nucleotide-binding-site opener (ARNO) is a guanine nucleotide-exchange factor (GEF) for ARF, and, at the plasma membrane, it can activate ARF6 to regulate actin reorganization and membrane ruffling. We show here that ARL4D interacts with the C-terminal pleckstrin homology (PH) and polybasic c domains of cytohesin-2/ARNO in a GTP-dependent manner. Localization of ARL4D at the plasma membrane is GTP- and N-terminal myristoylation-dependent. ARL4D(Q80L), a putative active form of ARL4D, induced accumulation of cytohesin-2/ARNO at the plasma membrane. Consistent with a known action of cytohesin-2/ARNO, ARL4D(Q80L) increased GTP-bound ARF6 and induced disassembly of actin stress fibers. Expression of inactive cytohesin-2/ARNO(E156K) or small interfering RNA knockdown of cytohesin-2/ARNO blocked ARL4D-mediated disassembly of actin stress fibers. Similar to the results with cytohesin-2/ARNO or ARF6, reduction of ARL4D suppressed cell migration activity. Furthermore, ARL4D-induced translocation of cytohesin-2/ARNO did not require phosphoinositide 3-kinase activation. Together, these data demonstrate that ARL4D acts as a novel upstream regulator of cytohesin-2/ARNO to promote ARF6 activation and modulate actin remodeling.  相似文献   

12.
The Ras homology (Rho) guanine nucleotide exchange factor p115-RhoGEF couples the alpha(13) heterotrimeric guanine nucleotide binding protein (G protein) subunit to Rho GTPase. Alpha(13) binds to a regulator of G protein signaling (RGS) domain in p115-RhoGEF, but the mechanism of alpha(13) activation of p115-RhoGEF is poorly understood. In this report, we demonstrate in cell-based assays that the acidic-rich N-terminus, adjacent to the RGS domain, is required for binding to activated alpha(13), and refine the importance of this region by showing that mutation of glutamic acids 27 and 29 in full-length p115-RhoGEF is sufficient to prevent interaction with activated alpha(13). However, alpha(13)-interacting deficient N-terminal mutants of p115-RhoGEF retain alpha(13)-dependent plasma membrane recruitment. Overall, these findings demonstrate a critical role for the N-terminal extension of p115-RhoGEF in mediating binding to alpha(13) and dissociate two activities of p115-RhoGEF: binding to activated alpha(13) and translocation to the PM in response to activated alpha(13).  相似文献   

13.
Mastoparan interacts with the carboxyl terminus of the alpha subunit of Gi   总被引:7,自引:0,他引:7  
Mastoparan, a peptide toxin from wasp venom, stimulates guanine nucleotide binding and hydrolysis by G proteins. To elucidate the site of mastoparan-G protein interaction, we utilized a polyclonal antibody (R16,17) directed against the carboxyl terminus of the Gi alpha subunit to develop a competitive enzyme-linked immunosorbent assay. We investigated the ability of mastoparan to influence R16,17 antibody binding to G protein alpha subunits in a purified preparation of brain Gi and in neutrophil membrane extracts. Mastoparan antagonized the ability of R16,17 to detect G protein alpha subunits with an IC50 of 15 microM in the purified preparation and with an IC50 of 1 microM for the predominant G protein population in membrane extracts. This reduction was not seen when an unrelated peptide or a peptide of similar charge composition to mastoparan was used in place of mastoparan in the assay. Additionally, antibody R16,17 blocked up to 85% of mastoparan-stimulated GTPase activity. Taken together, these data indicate that the interaction of mastoparan with G protein depends in part on the carboxyl terminus of Gi alpha. Pertussis toxin-catalyzed ADP-ribosylation of Gi alpha markedly inhibited mastoparan-stimulated GTPase activity but only slightly attenuated the ability of mastoparan to recognize G protein. These data suggest that ribosylation inhibits mastoparan-induced G protein activation by a mechanism distinct from the ability of mastoparan to physically interact with G protein. Since mastoparan is thought to mimic hormone-liganded receptors, these findings may be applicable to the mechanism of receptor-Gi protein uncoupling that results from ADP-ribosylation of the G protein.  相似文献   

14.
A membrane-bound protein cofactor (ARF) is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory regulatory component (Gs) of adenylate cyclase. Improved methods for the purification of ARF from bovine brain are described. ARF has a high-affinity binding site for guanine nucleotides. Binding of GTP or GTP gamma S to ARF is necessary for the activity of the cofactor; GDP X ARF does not support ADP-ribosylation of Gs. Although the protein as purified contains stoichiometric amounts of GDP, GTPase activity of isolated ARF was not detected. Cholera toxin-dependent activation of adenylate cyclase thus requires two guanine nucleotide binding proteins.  相似文献   

15.
The LH/CG receptor is a member of the family of G protein-coupled receptors and consists of a large N-terminal extracellular domain (which is responsible for binding hormone) attached to a region that spans the plasma membrane seven times, ending with an intracellularly located C-terminus. Binding of LH or human CG (hCG) to the LH/CG receptor causes a stimulation of adenylyl cyclase, presumably via activation of Gs. The binding of hormone also leads to its subsequent internalization by receptor-mediated endocytosis. In order to investigate the role of the cytoplasmic tail of this receptor in these events, we prepared a series of mutants in which progressively larger portions of the cytoplasmic tail were deleted. Deletion of 58 amino acids from the C-terminus, in which only 11 cytoplasmic residues remain, resulted in a receptor that was not expressed on the plasma membrane. Receptors rat LHR (rLHR)-t653 and rLHR-t631, in which 21 or 43 amino acids were removed, respectively, were properly expressed. These results suggest that a region(s) between residues 616 and 631 of the rLH/CG receptor are required for proper insertion and/or targeting of the receptor into the plasma membrane. Cells expressing rLHR-t653 or rLHR-t631 bound hCG with the same high affinity as cells expressing the full-length receptor, and basal levels of cAMP were the same among the cells. However, cells expressing the truncated receptors responded to hCG with approximately 2-fold greater levels of maximal cAMP accumulation than cells expressing the full-length receptor. Deletion of up to 43 amino acids from the C-terminus of the rLH/CG receptor had no deleterious effect on hCG internalization. In fact, mutants lacking 21 and 43 amino acids exhibited progressively faster rates of hCG internalization as compared to the full-length receptor. Once internalized, hCG was also degraded at a faster rate in cells expressing the truncated LH/CG receptors. Since hCG-stimulated cAMP stimulation and hCG internalization are retained by rLHR-t631, it can be concluded that the residues, not necessarily the same, required for these functions reside within the 26 amino acids of the cytoplasmic tail closest to the seventh transmembrane helix and/or residues within the intracellular loops. Our data show, however, that both hCG-stimulated cAMP production and hCG internalization are enhanced by the removal of the distal portion of the cytoplasmic tail.  相似文献   

16.
B Kühn  T Gudermann 《Biochemistry》1999,38(38):12490-12498
Binding of lutropin/choriogonadotropin (LH/CG) to its cognate receptor results in the activation of adenylyl cyclase and phospholipase C. This divergent signaling of the LH receptor is based on the independent activation of distinct G protein subfamilies, i.e. , Gs, Gi, and potentially also Gq. To examine the selectivity of LH receptor coupling to phospholipase C beta-activating G proteins, we used an in vivo reconstitution system based on the coexpression of the LH receptor and different G proteins in baculovirus-infected insect cells. In this paper, we describe a refined expression strategy for the LH receptor in insect cells. The receptor protein was inserted into the cell membrane at an expression level of 0.8 pmol/mg of membrane protein. Sf9 cells expressing the LH receptor responded to hCG challenge with a concentration-dependent accumulation of intracellular cAMP (EC50 = 630 nM) but not of inositol phosphates, whereas stimulation of the histamine H1 receptor in Sf9 cells led to increased phospholipase C (PLC) activity. Immunoblotting experiments using G protein-specific antisera revealed the absence of quantitative amounts of alpha i in Sf9 cells, whereas alpha s and alpha q/11 were detected. We therefore attempted to restore the hCG-dependent PLC activation by infection of Sf9 cells with viruses encoding the LH receptor and different G protein alpha subunits. HCG stimulation of cells coexpressing the LH receptor and exogenous alpha i2 resulted in stimulation of PLC activity. In cells coinfected with an alpha i3-baculovirus, hCG challenge led to a minor activation of PLC, whereas no hCG-dependent PLC stimulation was observed in cells coexpressing alpha i1. Most notably, coinfection with baculoviruses encoding alpha q or alpha 11 did not reproduce the PLC activation by the LH receptor. Thus, the murine LH receptor activates adenylyl cyclase via Gs and PLC via selective coupling to Gi2.  相似文献   

17.
Desensitization is a ubiquitous response of guanine nucleotide-binding protein-coupled receptors (GPCRs) characterized by the waning of effector activity despite continued presence of agonist. Binding of an arrestin to the activated, often phosphorylated GPCR triggers desensitization. We reported for the luteinizing hormone/choriogonadotropin receptor (LH/CG R) that beta-arrestin tightly bound to porcine ovarian follicular membranes mediates agonist-dependent desensitization of LH/CG R-stimulated adenylyl cyclase (AC) activity (Mukherjee, S., Palczewski, K., Gurevich, V. V., Benovic, J. L., Banga, J. P., and Hunzicker-Dunn, M. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 493-498). We now show that addition of a synthetic peptide corresponding to the entire third intracellular loop (3i) of the LH/CG R completely and specifically reverses desensitization of AC activity, with an ED50 of 10 microM but does not modulate basal, hCG-stimulated, or forskolin-stimulated AC activities. beta-Arrestin binds selectively to the 3i peptide coupled to activated Sepharose. Desensitization of LH/CG R-stimulated AC activity is rescued when the 3i peptide is preincubated with exogenous beta-arrestin. These results show that endogenous beta-arrestin participates in cell-free desensitization of agonist-dependent LH/CG R-stimulated AC activity in follicular membranes by interacting directly with the 3i loop of the receptor, thereby preventing Gs activation.  相似文献   

18.
S C Tsai  R Adamik  J Moss  M Vaughan 《Biochemistry》1991,30(15):3697-3703
Cholera toxin activates adenylyl cyclase by catalyzing the ADP-ribosylation of Gs alpha, the stimulatory guanine nucleotide binding protein of the cyclase system. This toxin-catalyzed reaction, as well as the ADP-ribosylation of guanidino compounds and auto-ADP-ribosylation of the toxin A1 protein (CTA1), is stimulated, in the presence of GTP (or GTP analogue), by 19-21-kDa proteins, termed ADP-ribosylation factors or ARFs. These proteins directly activate CTA1 in a reaction enhanced by sodium dodecyl sulfate (SDS) or dimyristoylphosphatidylcholine (DMPC)/cholate. To determine whether ARF stimulation of ADP-ribosylation is associated with formation of a toxin-ARF complex, these proteins were incubated with guanine nucleotides and/or detergents and then subjected to gel permeation chromatography. An active ARF-toxin complex was observed in the presence of SDS and GTP gamma S [guanosine 5'-O-(3-thiotriphosphate)] but not GDP beta S [guanosine 5'-O-(2-thiodiphosphate)]. Only a fraction of the ARF was capable of complex formation. The substrate specificities of complexed and noncomplexed CTA differed; complexed CTA exhibited markedly enhanced auto-ADP-ribosylation. In the presence of GTP gamma S and DMPC/cholate, an ARF-CTA complex was not detected. A GTP gamma S-dependent ARF aggregate was observed, however, exhibiting a different substrate specificity from monomeric ARF. These studies support the hypothesis that in the presence of guanine nucleotide and either SDS or DMPC/cholate, ARF and toxin exist as multiple species which exhibit different substrate specificities.  相似文献   

19.
Heptahelical receptors activate intracellular signaling pathways by catalyzing GTP for GDP exchange on the heterotrimeric G protein alpha subunit (G alpha). Despite the crucial role of this process in cell signaling, little is known about the mechanism of G protein activation. Here we explore the structural basis for receptor-mediated GDP release using electron paramagnetic resonance spectroscopy. Binding to the activated receptor (R*) causes an apparent rigid-body movement of the alpha5 helix of G alpha that would perturb GDP binding at the beta6-alpha5 loop. This movement was not observed when a flexible loop was inserted between the alpha5 helix and the R*-binding C terminus, which uncouples R* binding from nucleotide exchange, suggesting that this movement is necessary for GDP release. These data provide the first direct observation of R*-mediated conformational changes in G proteins and define the structural basis for GDP release from G alpha.  相似文献   

20.
beta-Arrestins are multifunctional adaptor proteins known to regulate internalization of agonist-stimulated G protein-coupled receptors by linking them to endocytic proteins such as clathrin and AP-2. Here we describe a previously unappreciated mechanism by which beta-arrestin orchestrates the process of receptor endocytosis through the activation of ADP-ribosylation factor 6 (ARF6), a small GTP-binding protein. Involvement of ARF6 in the endocytic process is demonstrated by the ability of GTP-binding defective and GTP hydrolysis-deficient mutants to inhibit internalization of the beta(2)-adrenergic receptor. The importance of regulation of ARF6 function is shown by the ability of the ARF GTPase-activating protein GIT1 to inhibit and of the ARF nucleotide exchange factor, ARNO, to enhance receptor endocytosis. Endogenous beta-arrestin is found in complex with ARNO. Upon agonist stimulation of the receptor, beta-arrestin also interacts with the GDP-liganded form of ARF6, thereby facilitating ARNO-promoted GTP loading and activation of the G protein. Thus, the agonist-driven formation of a complex including beta-arrestin, ARNO, and ARF6 provides a molecular mechanism that explains how the agonist-stimulated receptor recruits a small G protein necessary for the endocytic process and controls its activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号