首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The internal abdominal muscles are biaxially loaded in vivo, and therefore length-tension relations along and transverse to the directions of the muscle fibers are important in understanding their mechanical properties. We hypothesized that 1) internal oblique and transversus abdominis form an internal abdominal composite muscle with altered compliance than that of either muscle individually, and 2) anisotropy, different compliances in orthogonal directions, of internal abdominal composite muscle is less pronounced than that of its individual muscles. To test these hypotheses, in vitro mechanical testing was performed on 5 x 5 cm squares of transversus abdominis, internal oblique, and the two muscles together as a composite. These tissues were harvested from the left lateral side of abdominal muscles of eleven mongrel dogs (15-23 kg) and placed in a bath of oxygenated Krebs solution. Each tissue strip was attached to a biaxial mechanical testing device. Each muscle was passively lengthened and shortened along muscle fibers, transverse to fibers, or simultaneously along and transverse to muscle fibers. Both transversus abdominis and internal oblique muscles demonstrated less extensibility in the direction transverse to muscle fibers than along fibers. Biaxial loading caused a stiffening effect that was greater in the direction along the fibers than transverse to the fibers. Furthermore, the abdominal muscle composite was less compliant than either muscle alone in the direction of the muscle fibers. Taken together, our data suggested that the internal abdominal composite tissue has complex mechanical properties that are dependent on the mechanical properties of internal oblique and transversus abdominis muscles.  相似文献   

3.
The purpose of this study was to determine the influence of posture on the expiratory activity of the abdominal muscles. Fifteen young adult men participated in the study. Activities of the external oblique abdominis, internal oblique abdominis, and rectus abdominis muscles were measured electromyographically in various postures. We used a pressure threshold in order to activate the abdominal muscles as these muscles are silent at rest. A spirometer was used to measure the lung volume in various postures. Subjects were placed in the supine, standing, sitting, and sitting-with-elbow-on-the-knee (SEK) positions. Electromyographic activity and mouth pressure were measured during spontaneous breathing and maximal voluntary ventilation under the respiratory load. We observed that the lung volume changed with posture; however, the breathing pattern under respiratory load did not change. During maximal voluntary ventilation, internal oblique abdominis muscle expiratory activity was lower in the SEK position than in any other position, external oblique abdominis muscle inspiratory activity was lower in the supine position than in any other position, and internal oblique abdominis muscle activity was higher in the standing position than in any other position. During spontaneous breathing, external oblique abdominis muscle activity was higher during expiration and inspiration in the SEK position than in any other position. The internal oblique abdominis muscle activity was higher during both inspiration and expiration in the standing position than in any other position. The rectus abdominis muscle activity did not change with changes in posture during both inspiration and expiration. Increase in the external oblique abdominis activity in the SEK position was due to anatomical muscle arrangement that was consistent with the direction of lower rib movement. On the other hand, increase in the internal oblique abdominis activity in the standing position was due to stretching of the abdominal wall by the viscera. We concluded that differences in activity were due to differences in the anatomy of the abdominal muscles and the influence of gravity.  相似文献   

4.
5.
The respiratory muscles constitute the respiratory pump, which determines the efficacy of ventilation. Any functional disorder in their performance may cause insufficient ventilation. This study was designed to quantitatively explore the relative contribution of major groups of respiratory muscles to global lung ventilation throughout a range of maneuvers in healthy subjects. A computerized experimental system was developed for simultaneous noninvasive measurement of inspired/expired airflow, mouth pressure and up to 8 channels of EMG surface signals from major respiratory muscles which are located near the skin (e.g., sternomastoid, external intercostal, rectus abdominis and external oblique) during various respiratory maneuvers. Lung volumes values were calculated by integration of airflow data. Hill's muscle model was utilized to calculate the forces generated by the muscles from the acquired EMG data. Analysis of EMG measurements and respiratory muscles forces revealed the following characteristics: (a) muscle activity increased with increased breathing effort, (b) inspiratory muscles contributed to inspiration even at relatively low flow rates, while expiratory muscles are recruited at higher flow rates, (c) the forces generated by the muscle depended on the muscle properties as well as on their EMG performance and (d) the pattern of the muscle's force curves varied between subjects, but were generally consistent for the same subject regardless of breathing effort.  相似文献   

6.
7.
A pelvic position has been sought that optimizes abdominal muscle activation while diminishing hip flexor activation. Thus, the objective of the study was to investigate the effect of pelvic position and the Janda sit-up on trunk muscle activation. Sixteen male volunteers underwent electromyographic (EMG) testing of their abdominal and hip flexor muscles during a supine isometric double straight leg lift (DSLL) with the feet held approximately 5 cm above a board. The second exercise (Janda sit-up) was a sit-up action where participants simultaneously contracted the hamstrings and the abdominal musculature while holding an approximately 45 degrees angle at the knee. Root mean square surface electromyography was calculated for the Janda sit-up and DSLL under 3 pelvic positions: anterior, neutral, and posterior pelvic tilt. The selected muscles were the upper and lower rectus abdominis (URA, LRA), external obliques, lower abdominal stabilizers (LAS), rectus femoris, and biceps femoris. The Janda sit-up position demonstrated the highest URA and LRA activation and the lowest rectus femoris activation. The Janda sit-up and the posterior tilt were significantly greater (p < 0.01 and p < 0.05, respectively) than the anterior tilt for the URA and LRA muscles. Activation levels of the URA and LRA in neutral pelvis were significantly (p < 0.01 and p < 0.05, respectively) less than the Janda sit-up position, but not significantly different from the posterior tilt. No significant differences in EMG activity were found for the external obliques or LAS. No rectus femoris differences were found in the 3 pelvis positions. The results of this study indicate that pelvic position had a significant effect on the activation of selected trunk and hip muscles during isometric exercise, and the activation of the biceps femoris during the Janda sit-up reduced the activation of the rectus femoris while producing high levels of activation of the URA and LRA.  相似文献   

8.
9.
IntroductionIn this study, we tested two assumptions that have been made in experimental studies on muscle mechanics: (i) that the torque-angle properties are similar among agonistic muscles crossing a joint, and (ii) that the sum of the torque capacity of individual muscles adds up to the torque capacity of the agonist group.MethodsMaximum isometric torque measurements were made using a specifically designed animal knee extension dynamometer for the intact rabbit quadriceps muscles (n = 10) for knee angles between 60 and 120°. The nerve branches of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) muscles were carefully dissected, and a custom made nerve cuff electrode was implanted on each branch. Knee extensor torques were measured for four maximal activation conditions at each knee angle: VL activation, VM activation, RF activation, and activation of all three muscles together.ResultsWith the exception of VL, the torque-angle relationships of the individual muscles did not have the shape of the torque-angle relationship obtained when all muscles were activated simultaneously. Furthermore, the maximum torque capacity obtained by adding the individual torque capacities of VL, VM and RF was approximately 20% higher than the torques produced when the three muscles were activated simultaneously.DiscussionThese results bring into question our understanding of in-vivo muscle contraction and challenge assumptions that are sometimes made in human and animal muscle force analyses.  相似文献   

10.
Hodges, Paul W., Simon C. Gandevia, and Carolyn A. Richardson. Contractions of specific abdominalmuscles in postural tasks are affected by respiratory maneuvers.J. Appl. Physiol. 83(3): 753-760, 1997.The influence of respiratory activity of the abdominal muscleson their reaction time in a postural task was evaluated. Theelectromyographic (EMG) onsets of the abdominal muscles and deltoidwere evaluated in response to shoulder flexion initiated by a visualstimulus occurring at random throughout the respiratory cycle.Increased activity of the abdominal muscles was produced by inspiratoryloading, forced expiration below functional residual capacity, and astatic glottis-closed expulsive maneuver. During quiet breathing, thelatency between activation of the abdominal muscles and deltoid was notinfluenced by the respiratory cycle. When respiratory activity of theabdominal muscles increased, the EMG onset of transversus abdominis andinternal oblique, relative to deltoid, was significantly earlier formovements beginning in expiration, compared with inspiration [by97-107 ms (P < 0.01) and64-90 ms (P < 0.01),respectively]. However, the onset of transversus abdominis EMGwas delayed by 31-54 ms (P < 0.01) when movement was performed during a static expulsive effort,compared with quiet respiration. Thus changes occur in earlyanticipatory contraction of transversus abdominis during respiratorytasks but they cannot be explained simply by existing activation of themotoneuron pool.

  相似文献   

11.
There are three types in position of the abdominal internal organs: visceronorm, dolichoviscerosis and visceroptosis. The anterior abdominal wall also has its own anatomical peculiarities at every type of the internal organs position. Anatomical differences of its structure at visceronorm and dolichoviscerosis in comparison with visceroptosis are characterized as following: the area of aponeurotic formations of the anterior abdominal wall at dolichoviscerosis and visceroptosis increases and that of the muscular-decreases. Umbilical and inguinal rings are essentially dilated in comparison with those at visceronorm. It means that at dolichoviscerosis and visceroptosis there are anatomical prerequisites for development of external hernias in the anterior abdominal wall. A considerable mobility of the intestinal tract loops at dolichoviscerosis and visceroptosis results in certain disturbances of its function and their outlet into hernial sacs.  相似文献   

12.
It was observed, that following an injection of 3-methylcholanthrene (MC), the tissue redox-state potential is modified expressively both in liver and in red muscles. In the liver in the first day an oxidosis develops, which is followed by redosis, but in the muscle a redosis can be observed already in the first day. It is a meaningful fact, that MC influences biochemical processes in the early phase of its effect not only in the liver but also in the red muscle. By reason of this data the possibility of a prevention of the MC influence by adequate redox agents might also be arised.  相似文献   

13.
14.
15.
16.
17.
18.
During resting breathing, expiration is characterized by the narrowing of the vocal folds which, by increasing the expiratory resistance, raises mean lung volume and airway pressure. This is even more pronounced in the neonatal period, during which expirations with short complete airway closure are commonly occurring. We asked to which extent differences in expiratory flow pattern may modify the inspiratory impedance of the respiratory system. To this aim, newborn puppies, piglets, and adult rats were anesthetized, paralyzed, and ventilated with different expiratory patterns, (a) no expiratory load, (b) expiratory resistive load, and (c) end-inspiratory pause. The stroke volume of the ventilator and inspiratory and expiratory times were maintained constant, and the loads were adjusted in such a way that inflation always started from the resting volume of the respiratory system. After 1 min of each ventilatory pattern, mean inspiratory impedance and compliance of lung and respiratory system were measured. The values were unchanged or minimally altered by changing the type of ventilation. We conclude that the expiratory laryngeal loading is not primarily aimed to decrease the work of breathing. It is conceivable that the expiratory pattern is oriented to increase and control mean airway pressure in the regulation of pulmonary fluid reabsorption, distribution of ventilation, and diffusion of gases.  相似文献   

19.
20.
A method was developed to measure metabolic fluxes across either portally-drained viscera (PDV) and liver or kidney and hindquarter (HQ) in anesthetized mice. The method includes a primed-constant infusion of ketamine-medetomidine anaesthesia to stabilize the mice for the surgical procedures. For measurement of metabolic fluxes across PDV and liver, blood sampling catheters were inserted in the carotid artery, portal vein and hepatic vein and infusion catheters in the jugular vein and mesenteric vein. For measurement of metabolic flux across kidney and HQ, blood sampling catheters were inserted in the carotid artery, renal vein and caval vein and infusion catheters in the jugular vein and abdominal aorta. 14C-PAH was infused to enable plasma flow measurement using an indicator dilution method. In addition, we developed a blood sampling procedure without waste of blood. We measured plasma flow and metabolic fluxes across PDV, liver, kidney and HQ. Mean plasma flow in post-absorptive mice was: PDV: 0.9+/-0.2, liver: 1.2+/-0.3, kidney: 1.0+/-0.1, HQ: 1.1+/-0.3 ml/10 g body weight (b.w.)/min. Significant glutamine release by the HQ and uptake of glutamine by the kidney and PDV was observed. In PDV, citrulline is produced from glutamine and is in turn used by the kidney for the production of arginine. In conclusion, the described model enables measurement of metabolic fluxes across PDV, liver, kidney and HQ in mice. The availability of such a small animal model allows the potential for measuring metabolic parameters in transgenic and knockout mice, and therefore may lead to an important refinement in metabolic research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号