首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that molybdate-stabilized cytosol prepared from 32P-labeled L-cells contains two phosphoproteins (a 90-92- and a 98-100-kDa protein) that elute from an affinity resin of deoxycorticosterone-derivatized agarose in a manner consistent with the predicted behavior of the glucocorticoid receptor (Housley, P. R., and Pratt, W. B. (1983) J. Biol. Chem. 258, 4630-4635). In the present work we report that both the 90-92- and 98-100-kDa 32P-labeled proteins are also extracted from molybdate-stabilized cytosol by incubation with a monoclonal antibody and protein A-Sepharose. Only the 98-100-kDa protein is specifically labeled when either L-cell cytosol or L-cell cytosol proteins bound to the affinity resin are labeled with the glucocorticoid binding site-specific affinity ligand [3H]dexamethasone 21-mesylate. The 98-100-kDa protein labeled with [3H]dexamethasone mesylate is adsorbed to protein A-Sepharose in an immune-specific manner after reaction with the monoclonal antibody. Sodium dodecyl sulfate-polyacrylamide gel analysis of the protein A-Sepharose-bound material resulting from incubating the monoclonal antibody with a mixture of 32P-labeled cytosol and [3H]dexamethasone mesylate-labeled cytosol demonstrates identity of the 98-100-kDa [3H]dexamethasone mesylate-labeled band with the 98-100-kDa 32P-labeled band and clear separation from the nonsteroid-binding 90-92-kDa phosphoprotein. The results of immunoblot experiments demonstrate that the 90-92-kDa protein is structurally distinct from the 98-100-kDa steroid-binding protein. As the 90-92-kDa nonsteroid-binding phosphoprotein co-purified with the 98-100-kDa uncleaved form of the glucocorticoid receptor by two independent methods, one of which is based on recognizing a steroid-binding site and the other of which is based on recognizing an antibody binding site, we propose that the 90-92-kDa phosphoprotein is a component of the molybdate-stabilized, untransformed glucocorticoid-receptor complex in L-cell cytosol.  相似文献   

2.
Mapping the HSP90 binding region of the glucocorticoid receptor   总被引:11,自引:0,他引:11  
In animal cells, unliganded steroid receptors are complexed with a 90-kDa heat shock protein, HSP90; hormone binding by the receptor leads to the release of HSP90. We found that the 795-amino acid rat glucocorticoid receptor protein formed oligomeric complexes in vitro upon synthesis in rabbit reticulocyte lysates; these oligomers also dissociated in the presence of hormone. Similar complexes formed when X795, a receptor derivative containing only the C-terminal half (amino acids 407-795) of the protein, was translated in vitro. Moreover, X795 was co-immunoadsorbed from the reticulocyte lysates together with HSP90 by three different anti-HSP90 monoclonal antibodies, indicating that the in vitro translated receptor binds HSP90 and that the interaction occurs within the C-terminal half of the receptor. To localize the HSP90 binding region in greater detail, various deletion mutants of X795 were translated in vitro and assayed for oligomer formation and for co-immunoadsorption with HSP90. The results indicated that HSP90 interacted with the receptor within a subregion of the hormone binding domain, between amino acids 568 and 616. These findings are consistent with the proposal that HSP90 may participate in the mechanism of signal transduction by steroid receptors.  相似文献   

3.
We have recently reported that the glucocorticoid receptor (GR) becomes bound to the 90-kDa heat shock protein (hsp90) at or near the end of receptor translation in vitro (Dalman, F. C., Bresnick, E. H., Patel, P. D., Perdew, G. H., Watson, S. J., Jr., and Pratt, W. B. (1989) J. Biol. Chem. 264, 19815-19821). In this paper we compare the hsp90 binding and DNA binding activities of the thyroid hormone receptor (TR) to those of the GR after cell-free translation of the two receptors in rabbit reticulocyte lysate. In contrast to the newly translated GR, which is bound to hsp90 and must be transformed to the DNA binding state, the TR is not bound to hsp90 and is translated in its DNA binding form without any requirement for transformation. When the GR is translated in wheat germ extract, which does not contain hsp90, it is translated in its DNA binding form in the same manner as the TR synthesized in reticulocyte lysate. These observations provide direct evidence that binding of GR to hsp90 is associated with repression of its DNA binding function. The fact that the TR does not bind to hsp90 and is translated in its DNA binding form is consistent with the different behavior of this receptor with respect to classic steroid receptors in the intact cell. We propose that binding to hsp90 may account for the fact that most of the steroid receptors are recovered in the cytosolic fraction after lysis of hormone-free cells in low salt buffer whereas the hormone-free TR is recovered in tight association with the nucleus.  相似文献   

4.
Glucocorticoid receptors must be complexed with Hsp90 in order to bind steroids, and it has been reported that at least three other proteins, Hop, Hsc70, and a J-domain protein (either Hsp40 or Ydj1), are required for formation of active Hsp90-steroid receptor complex. In the present study, we reinvestigated activation of stripped steroid receptors isolated from either L cells or WCL2 cells. Surprisingly, we found, using highly purified proteins, that only Hsp90 and Hsc70 are required for the activation of glucocorticoid receptors in the presence of steroids; in the absence of steroids, either p23 or molybdate are also required as reported previously. Addition of Hop or Ydj1 had no affect on the rate or magnitude of the activation of the stripped receptors, and quantitative Western blots confirmed that neither Hop or Hsp40 were present in our protein preparations or in the stripped receptors. Furthermore, a truncated recombinant Hsp70 that does not bind Hop or Hsp40 was as effective as wild-type Hsp70 in activating stripped receptor. Since Hsc70 does not bind directly to Hsp90 but both proteins bind to Hop, it has been suggested that Hop acts as a bridge between Hsp90 and Hsp70. However, we found that after Hsc70 or Hsp90 bind directly to the stripped receptors, they are fully reactivated by Hsp90 or Hsc70, respectively. We, therefore, conclude that Hsp90 and Hsc70 bind independently to stripped glucocorticoid receptors and alone are sufficient to activate them to bind steroids.  相似文献   

5.
This paper summarizes our work performed with glucocorticoid-binding complexes in molybdate-stabilized cytosol prepared from 32P-labeled L-cells. In our early work, we showed that cytosol prepared from 32P-labeled L-cells contains two phosphoproteins (a 90 and a 98-100 kdalton protein) that elute from an affinity resin of deoxycorticosterone agarose in a manner consistent with the predicted behavior of the glucocorticoid receptor. Both phosphoproteins are immunoadsorbed onto protein-A-Sepharose from molybdate-stabilized cytosol incubated with a monoclonal antibody against the receptor. The 98-100 kdalton phosphoprotein binds steroid and the 90 kdalton phosphoprotein is a structurally different, nonsteroid-binding protein that is bound to the untransformed, molybdate-stabilized glucocorticoid receptor. The 90 kdalton protein reacts on Western blots with a monoclonal antibody raised against a 90 kdalton protein from the water mold Achlya ambisexualis. This antibody recognizes an epitope that is conserved in 90 kdalton phosphoproteins from rodent and human cells, and it reacts with the 90 kdalton phosphoprotein that copurifies with the molybdate-stabilized, untransformed chick oviduct progesterone receptor. The 90 kdalton nonsteroid-binding phosphoprotein is an abundant cytosolic protein that dissociates from the glucocorticoid receptor when it is transformed, and unlike the steroid-binding protein, it does not bind to DNA. The 90 kdalton phosphoprotein determines the acidic behavior of the untransformed glucocorticoid receptor on DEAE-cellulose. This abundant cytosolic 90 kdalton phosphoprotein reacts with rabbit antiserum raised against the gel purified 89 kdalton chicken heat-shock protein (hsp89). This antiserum recognizes 90 kdalton heat-shock proteins in human, rodent, frog and Drosophila cells. Immunoadsorption of molybdate-stabilized cytosol with antibody directed against the 98-100 kdalton steroid receptor results in the immune-specific adsorption of a 90 kdalton phosphoprotein that reacts with anti-hsp89 antibody on Western blots. These observations suggest that, like the transforming proteins from several avian sarcoma viruses, the untransformed glucocorticoid receptor exists in a complex with the 90 kdalton heat-shock protein.  相似文献   

6.
Some of the early steps of steroid hormone action have been studied in cultured hepatoma cells, in which glucocorticoids induce tyrosine aminotransferase. The hypothesis that inducer steroids promote the binding of specific cytoplasmic receptors to the cell nucleus has been examined in intact cells.Binding of steroids such as dexamethasone and cortisol results in a loss of most of the receptor sites from the cytoplasm. This coincides with the binding of an equivalent number of steroid molecules in the nucleus. Both processes occur concomitantly, even when their kinetics are altered by reducing the temperature. When the inducer is removed from the culture, steroid dissociates from the nucleus while the level of cytoplasmic receptor returns to normal, even if protein or RNA synthesis is inhibited. These results suggest that nuclear binding of glucocorticoids is due to the association with the nucleus of the cytoplasmic receptor-steroid complex itself and make it unlikely that the receptor acts as a mere carrier for the intracellular transfer of the steroid.Steroids that differ in their effects on tyrosine aminotransferase induction were also studied. In contrast to those bound with inducer steroids, receptors complexed with the anti-inducer progesterone did not leave the cytosol. Further, a suboptimal inducer (deoxycorticosterone) produced an intermediate level of depletion. Thus, the biological effect of different classes of steroids can be related to their capacity to promote nuclear binding of the receptor. These data support a model proposed earlier, according to which the receptor is an allosteric regulatory protein directly involved in the hormone action, under the control of specific steroid ligands. They further suggest that the conformational state influenced by the inducer is such that a nuclear binding site on the receptor is exposed.Evidence is also presented that a distinct reaction takes place between the binding of the steroid to the receptor and the association of the complex with the nucleus. At 0 °C, this change is rate-limiting. It could correspond to the “activation” of receptor-steroid complexes known to be required for binding of the complexes by isolated nuclei, and thus represent an additional step in hormone action.  相似文献   

7.
8.
The erythroid cells from the rat fetal liver have been shown to possess a receptor for glucocorticoids. In the present work, the characteristics of [3H]dexamethasone binding have been studied on intact cells, in order to minimize receptor degradation, and at 4 degrees C, in order to prevent the activation of the hormone-receptor complex. Dissociation kinetics were those of a first-order reaction and the value of the rate constant of dissociation was similar to the values available in the literature. When studied at low concentrations of the ligand and using short-term incubations, association kinetics were apparently those of a simple bimolecular reaction. But at high ligand concentrations and/or using long-term incubations, association kinetics indicated a more complex reaction. Our results were compatible with the model proposed by Pratt W.B., Kaine J.L. and Pratt V.D. (J. Biol. Chem. 250 (1975) 4584-4591) for cytosolic preparations. This model implies the rapid formation of a transient unstable form of the complex, further converted into a stable form with slower kinetics. Equilibrium dissociation constant of the first (rapid) reaction was 80 microM and the rate constant of 'stabilization' was of the order of 70 X 10(-3) min-1. These values agree with the results of Pratt et al. relative to a cytosolic preparation from rat thymocytes.  相似文献   

9.
M Rexin  W Busch  B Segnitz  U Gehring 《FEBS letters》1988,241(1-2):234-238
Mouse lymphoma cells contain a nonactivated glucocorticoid receptor of Mr approximately 330,000 which is heteromeric in nature and is unable to bind to DNA. Following affinity labeling of the steroid-binding subunit and subsequent cross-linking with dimethyl suberimidate at various times either in cell extracts or in intact cells, a series of labeled bands was detected in SDS gels. From the molecular masses of completely and partially cross-linked complexes we conclude that the large nonactivated receptor is a tetramer composed of two 90 kDa subunits, one 50 kDa polypeptide and one steroid-binding subunit.  相似文献   

10.
Glucocorticoid receptors have been proposed to undergo an ATP-dependent recycling process in intact cells, and a functional role for receptor phosphorylation has been suggested. To further investigate this possibility we have examined the phosphate content of the steroid-binding protein of all glucocorticoid receptor forms which have been isolated from WEHI-7 mouse thymoma cells. By labeling of intact cells with 32Pi for 18-20 h in the absence of hormone, covalent binding of [3H]dexamethasone 21-mesylate, immunopurification and SDS-PAGE analysis, the steroid binding protein was found to contain, on average, 2-3 phosphates as phosphoserine. One third of the phosphates were associated with proteolytic fragments encompassing the C-terminal steroid-binding domain. The central DNA-binding domain was not phosphorylated, leaving the other two thirds of the phosphates localized in the N-terminal domain. The phosphate content of various receptor forms from cells incubated with 32Pi and [35S]methionine was compared using 35S to normalize for quantity of protein. In ATP-depleted cells a non-steroid-binding form of the receptor (the "null" receptor) is found tightly bound to the nucleus, even without steroid. The phosphate content of null receptors was two thirds that of cytosolic receptors from normal cells, suggesting phosphorylation-dependent cycling in the absence of hormone. Addition of glucocorticoid agonists, but not antagonist, to 32P- and 35S-labeled cells increased the phosphate content of the cytosolic steroid-binding protein up to 170%, indicating an average increase in the phosphates from about 3 to 5. After 30 min of hormone treatment the phosphate content of the steroid-binding protein of cytosolic activated (DNA-binding) and nonactivated receptors, and that of nuclear receptors extractable with high salt concentrations and/or DNase I digestion, was the same. No change in the phosphate content of the 90-kDa heat shock protein associated with unliganded and nonactivated receptors was detected following association of the free protein with the receptor and following hormone binding of the receptor. Analysis of the unextractable nuclear receptors indicated that they contained less phosphate (60% of that of cytosolic receptors), similarly to null receptors, indicating that dephosphorylation is associated with the unextractable nuclear fraction. The rate of hormone-dependent phosphorylation appeared to be much faster than the rate of dephosphorylation in the presence of hormone, the latter determined by a chase of the 32P label with unlabeled phosphate. Our results show that phosphorylation and dephosphorylation are involved in the mechanism of action of glucocorticoid receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
12.
The nonactivated glucocorticoid receptor (Mr approximately 330,000, Strokes radius = 82 A) contained in cell extracts and complexed with a steroidal ligand was previously investigated by chemical cross-linking. It was identified as a heterotetramer composed of one receptor polypeptide, two molecules of the 90-kDa heat shock protein hsp90, and one 59-kDa protein subunit (Rexin, M., Busch, W., and Gehring, U. (1991) J. Biol. Chem. 266, 24601-24605). We now have used the cross-linking technique to investigate the receptor structure in intact WEHI-7 mouse lymphoma cells at 37 degrees C and under steroid-free conditions. Using immunochemical methods we show that the receptor present in whole cells likewise exists as a high molecular weight structure of Strokes radius 82 A. It has a subunit composition identical to that of the nonactivated receptor-steroid complex in cell extracts. This is the first account of a steroid hormone receptor in its native state as it is contained in target cells under physiological conditions and before a hormonal signal is received.  相似文献   

13.
The biological potencies of four antiglucocorticoids, RU486 (RU), dexamethasone-oxetanone (DOX), R5020, and progesterone have been studied with respect to dexamethasone induction of tyrosine aminotransferase (TAT) in rat hepatoma tissue culture (HTC) cells. Their inhibitory effects in whole-cell competition binding studies (at 37 degrees C) and in TAT induction studies were analyzed by Dixon plots and Schild plots, respectively. We show that: In both cases, there is an actual competition of each antiglucocorticoid with the agonist dexamethasone for the same binding site; the two Kd values derived from the two plots are almost identical for each antiglucocorticoid; RU486 can be distinguished from the three other antiglucocorticoids by its high biological efficacy and its high affinity for the glucocorticoid receptor in whole cells at 37 degrees C (identical to its affinity in cytosol at 0 degree C). These results imply that: There is a linear correlation between the antagonist efficacies of antiglucocorticoids and their affinities for the glucocorticoid receptor in whole cells at 37 degrees C; the antagonistic action is solely mediated by competition with the agonist for the receptor binding site; this is verified by the fact that in all cases, in the presence or absence of antiglucocorticoids, a specific TAT induction level was always related to the same level of receptor saturation by the agonist in whole cells; the phenomena responsible for the high antagonist efficacy of RU486 are also responsible for its high affinity in whole cells at 37 degrees C.  相似文献   

14.
Glucocorticoid receptors in the IM-9 human lymphoblastoid cell line were affinity labeled with [3H]dexamethasone 21-mesylate and activated to a DNA-binding form by filtration through a Bio-Gel A-1.5m column. The 90 kDa heat shock protein, HSP90, was identified by labeling IM-9 cells with 35S-methionine at both 37 degrees C and 42 degrees C and purified to near homogeneity by sequential chromatography through DE52 and hydroxyapatite. Addition of purified HSP90 to activated, affinity labeled glucocorticoid receptors in a molecular ratio of 16 to 1 inhibited the binding of the receptors to DNA-cellulose. HSP90 did not affect the binding of other proteins to DNA-cellulose, indicating that the inhibitory effect of HSP90 was specific for the glucocorticoid receptor. These results suggest that HSP90 may associate with the glucocorticoid receptor, masking its DNA-binding site and thereby inhibiting receptor interaction with DNA.  相似文献   

15.
We have recently described a 16 kDa steroid binding core (Thr537-Arg673) of the rat glucocorticoid receptor [Simons et al. (1989) J. Biol. Chem. 264, 14493-14497]. Sedimentation analysis and size exclusion and anion exchange chromatography now suggest that other proteins are associated with the 16 kDa receptor, just as has been seen for the intact 98 kDa receptor. The 16 kDa fragment was also immunoprecipitable with anti-heat shock protein 90 (hsp90) antibody. These results argue that hsp90 binds to the 16 kDa core fragment and directly position the site of hsp90 association between Thr537 and Arg673 of the rat glucocorticoid receptor.  相似文献   

16.
17.
The 9S molybdate-stabilized form of the glucocorticoid receptor of mouse L cell lysates was immunoadsorbed to protein-A-Sepharose with antiserum directed against the 89-kilodalton chicken heat shock protein (anti-hsp89). In order to achieve this, "free" (nonreceptor associated) hsp90 was first separated from the molybdate-stabilized 9S receptor by sucrose gradient sedimentation. Incubation of the 9S [3H]triamcinolone acetonide-labeled receptor peak with anti-hsp89 results in the immune-specific adsorption of 20% of the specifically bound radioactivity and adsorption of the 100-kilodalton receptor protein, as detected by Western-blotting, using the GR49 antireceptor monoclonal antibody as probe. These observations provide the only direct proof that hsp90 is a component of the 9S form of a steroid receptor.  相似文献   

18.
19.
20.
Site-directed mutagenesis was applied to modify phenylalanines (Phe(475)Trp, Phe(548)Tyr, and both) to generate mutants on the basis of molecular modeling of the ATP-binding domain of Na(+)/K(+)-ATPase, in order to characterize the forces that stabilize ATP in its binding pocket. Each of the mutants was examined by Raman difference spectroscopy, i.e., as a difference between the spectrum of the domain with and without bound ATP. It was shown that Phe(475) plays a key role in stabilizing ATP-binding by a stacking interaction. Phe(548) co-stabilizes ATP on the opposite site of the binding pocket and its type of interaction with ATP-binding differs from that of Phe(475).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号