首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study on the excretory apparatus of the Bufo bufo larvae, the ultrastructural features and the atrial natriuretic peptide (ANP)-system were examined using cytochemical and immunocytochemical methods. The early embryonic kidney, the pronephros, is replaced by a later stage, the mesonephros. The pronephros degenerates at the time of metamorphosis and the mesonephros becomes the functional kidney in the adult. Both these organs are targets for ANP, demonstrated by the presence of the specific receptors, indirectly highlighted by the cytochemical localization of the guanylate cyclase in the presence of exogenous atrial natriuretic peptide. This study concluded that the mesonephros produces ANP and thus clusters of cells containing ANP-like granules, positive to the anti-α ANP immunolocalization, were present along the mesonephric proximal tubule. The atrial natriuretic peptide system carries out an important osmoregulatory role in the excretory apparatus.  相似文献   

2.
In this study the ultrastructure of Rana esculenta skin is described. Cytochemical methods were used to localize guanylate cyclase in the presence of atrial natriuretic peptide and immunocytochemical methods showed the presence of the atrial natriuretic peptide in various levels of skin. The peptide is mainly found in the epithelium and in the lymph sacs of the tela subcutanea. Its receptors are located in the same zones and are indicated by guanylate cyclase activity. We demonstrate that frog skin is a target organ for atrial natriuretic peptide and propose that, at this level, the peptide carries out an important osmoregulatory role.  相似文献   

3.
Summary The ultracytochemical localization of membrane-bound guanylate cyclases A and B has been studied after stimulation with atrial natriuretic peptide, C-type natriuretic peptide and brain natriuretic peptide in the gastrointestinal tract of rat. The two isoforms are stimulated differently by the three peptides. The results showed that the atrial and C-type natriuretic peptides stimulated guanylate cyclase activity, whereas the brain peptide seemed not to activate enough of the enzyme to detect. The guanylate cyclase activity had a wider distribution in stomach and small intestine than in large intestine; nevertheless, the reaction product of guanylate cyclase A activity had a wider localization in the stomach, whereas the reaction product of guanylate cyclase B activity had a wider distribution in the small intestine. In the small and large intestine, we detected mostly similar localizations of guanylate cyclase activity irrespective of the peptide used; in the stomach the reaction products of guanylate cyclase A and B were detected in different cell types or in different sites of the same cell. In all the gastrointestinal tract, guanylate cyclase activity was detected mainly in three types of cells: exocrine and endocrine cells; undifferentiated and mature epithelial cells; and smooth muscle cells. These localizations of guanylate cyclase activity suggest its role in regulating glandular secretion, cellular proliferation and muscular activity. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
Summary We studied the cytochemical localization of particulate guanylate cyclase (GC) in rat adrenal gland after stimulation with porcine brain natriuretic peptide (pBNP) by electron microscopy. In the adrenal cortex, GC activity, as demonstrated by the presence of reaction product, was prevalently localized to the zona glomerulosa and zona fasciculata, while the zona reticularis showed little GC reaction product. In the adrenal medulla, GC reaction product was present only in adrenalin-containing cells. All GC positivity was associated with intracellular membranes. No GC reaction product was detected in specimens incubated in media devoid of pBNP. In parallel samples incubated in the presence of rat atrial natriuretic factor (rANF), the distribution of rANF-stimulated GC activity was similar to that of pBNP-stimulated GC activity.  相似文献   

5.
Summary The ultracytochemical localization of particulate guanylate cyclase has been studied in lamb olfactory mucosa after activation with rat atrial natriuretic factor (rANF), porcine brain natriuretic peptide (pBNP), porcine C-type natriuretic peptide (pCNP) or rat brain natriuretic peptide (rBNP). Particulate guanylate cyclase is the receptor for these peptides and recently two subtypes of the cyclase have been identified. These isoforms are stimulated differently by ANF, BNP and CNP. Under our experimental conditions, rANF, pCNP and pBNP were strong activators of particulate guanylate cyclase in lamb olfactory mucosa, as demonstrated by the presence of reaction product. Samples incubated in basal conditions without rANF, pCNP or pBNP, or samples incubated in presence of rBNP did not reveal any cyclase activity. The rANF-stimulated cyclase activity was localized in the apical portion of olfactory epithelium. pCNP-stimulated guanylate cyclase was detected to the lamina propria in association with secretory cells of Bowman's glands and with cells in close relation with Bowman's glands (elongated cells and myoepithelial cells). The cyclase activity stimulated by pBNP was limited to cells of Bowman's glands. The present data indicate that ANF and CNP are recognized by different receptors and that BNP and CNP bind to the same receptor.  相似文献   

6.
Summary The cytochemical localization of particulate guanylate cyclase and adenylate cyclase activities in rabbit platelets were studied after stimulation with various agents, at the electron microscope level. In the presence of platelet aggregating agents such as thrombin and ADP, the particulate reaction product of guanylate cyclase activity was detectable on plasma membrane and on membranes of the open canalicular system. In contrast, samples incubated with platelet-activating factor showed no activation of the cyclase activity. Atrial natriuretic factor stimulated the particulate guanylate cyclase. The ultracytochemical localization of this activated cyclase was the same as that of thrombin-or ADP-stimulated guanylate cyclase. Adenylate cyclase activity was studied in platelets incubated with prostaglandin E1 plus or minus insulin. The enzyme reaction product was found at the same sites where guanylate cyclase was detected. Therefore guanylate and adenylate cyclase activities do not seem to be preferentially localised in platelet membranes.  相似文献   

7.
The ultracytochemical localization of membrane-bound guanylate cyclases A and C, stimulated by atrial natriuretic peptide and guanylin respectively, has been studied in human sweat glands. The results showed that the peptides stimulated guanylate cyclases A and C in both eccrine and apocrine glands. In the secretory cells, enzymatic activity was present on the plasma membranes and on intracellular membranes involved in the secretory mechanism. In eccrine glands, the cells of the excretory duct also presented enzymatic activity on the plasma membranes. In both glands, myoepithelial cells, surrounding the secretory cells, exhibited only guanylate cyclase A activity. These localizations of enzymatic activity suggest a role for both atrial natriuretic peptide and guanylin in regulating glandular secretion.  相似文献   

8.
Coupling of the atrial natriuretic peptide (ANP) receptor to particulate guanylate cyclase has been demonstrated kinetically and chromatographically using bovine lung plasma membranes and their detergent extracts. Addition of ANP to the membrane suspension stimulated guanylate cyclase activity 2-5-fold indicating the presence of ANP-sensitive particulate guanylate cyclase. The enzyme retained the ability to respond to ANP even after solubilization with digitonin. Characterization of the solubilized enzyme by gel filtration and affinity chromatography revealed that the ANP receptor and particulate guanylate cyclase exist as a functionally but not covalently linked stable complex.  相似文献   

9.
The general morphology and surface ultrastructure of the gills of adult and larvae medaka (Oryzias latipes) were studied in freshwater and seawater using scanning electron microscopy. The gills of all examined fish were structurally similar to those of other teleosts and consisted of four pairs of arches supporting (i) filaments bearing lamellae and (ii) rakers containing taste buds. Three cell types, specifically pavement cells, mitochondria‐rich cells (MRCs), and mucous cells, constituted the surface layer of the gill epithelium. Several distinctive characteristics of medaka gills were noted, including the presence of regularly distributed outgrowth on the lamellae, enlarged filament tips, the absence of microridges in most pavement cells in the filament and lamellae and the presence of MRCs in the arch at the filament base. A rapid mode of development was recorded in the gills of larval fish. At hatching, the larvae already had four arches with rudimentary filaments, rakers, and taste buds. The rudimentary lamellae appeared within 2 days after hatching. These results suggest the early involvement of larval gills in respiratory and osmoregulation activities. The responses of the macrostructures and microstructures of gills to seawater acclimation were similar in larvae and adult fish and included modification of the apical surface of MRCs, confirming the importance of these cells in osmoregulation. The potential roles of these peculiarities of the macrostructures and microstructures of medaka gills in the major functions of this organ, such as respiration and osmoregulation, are discussed.  相似文献   

10.
The Neotropical armoured catfish Corydoras paleatus is a facultative air-breathing teleost commonly exported as ornamental fish. In this species, air breathing enables it to survive and inhabit freshwater environments with low oxygen levels. Therefore, it is important to analyse the gills from a morphological aspect and its dimensions in relation to body mass with reference to aquatic respiration. For that, the gills were analysed using a stereoscopic microscope for morphometric studies, and structural and ultrastructural studies were carried out to compare the four branchial arches. Furthermore, two immunohistochemical techniques were used to locate and identify the presence of a Na+/K+ pump. The characterization of the potential for cell proliferation of this organ was assessed using an anti-PCNA antibody. The results show that gills of C. paleatus present some characteristics related to its diet and lifestyle, such as the limited development of gill rakers and the abundance of taste buds. In addition, other special features associated with the environment and bimodal breathing were observed: scarce and absent mucous cells (MCs) in the gill filaments and branchial lamellae, respectively, and the localization of mitochondria-rich cells (MRCs) covering the basal third of the branchial lamellae, which reduces the gill respiratory area. A peculiar finding in the gill epithelium of this armoured catfish was the presence of mononuclear cells with sarcomeres similar to myoid cells, whose functional importance should be determined in future studies. Finally, in C. paleatus, the interlamellar space of gill filaments is an important site for cell turnover and ionoregulation; the latter function is also performed by the branchial lamellae.  相似文献   

11.
A 23 amino acid synthetic peptide fragment of atrial natriuretic factor (ANF) stimulated guanylate cyclase activity in isolated human glomeruli in a concentration- and time-dependent manner. ANF activated particulate guanylate cyclase whereas it had no effect on soluble guanylate cyclase. These results demonstrate that the glomerulus is a target structure for ANF in humans. They also suggest that ANF-induced increase in glomerular filtration rate is due to a direct effect of this peptide on the glomerular cells mediated by activation of glomerular guanylate cyclase.  相似文献   

12.
ATP is an obligatory agent for the atrial natriuretic factor (ANF) and the type C natriuretic peptide (CNP) signaling of their respective receptor guanylate cyclases, ANF-RGC and CNP-RGC. Through a common mechanism, it binds to a defined ARM domain of the cyclase, activates the cyclase and transduces the signal into generation of the second messenger cyclic GMP. In this presentation, the authors review the ATP-regulated transduction mechanism and refine the previously simulated three-dimensional ARM model (Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2000;214:7-14; reviewed in: Sharma RK, Yadav P, Duda T. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 2001;79: 682-91; Sharma RK. Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 2002;230:3-30). The model depicts the ATP-binding dependent configurational changes in the ARM and supports the concept that in the first step, ATP partially activates the cyclase and primes it for the subsequent transduction steps, resulting in full activation of the cyclase.  相似文献   

13.
The potent diuretic and natriuretic peptide hormone atrial natriuretic factor (ANF), with vasodilatory activity also stimulates steroidogenic responsiveness in Leydig cells. The actions of ANF are mediated by its interaction with specific cell surface receptors and the membrane-bound form of guanylate cyclase represents an atrial natriuretic factor receptor (ANF-R). To understand the mechanism of ANF action in testicular steroidogenesis and to identify guanylate cyclase/ANF-R that is expressed in the Leydig cells, the primary structure of murine guanylate cyclase/ANF-R has been deduced from its cDNA sequence. A cDNA library constructed from poly(A+) RNA of murine Leydig tumor (MA-10) cell line was screened for the membrane-bound form of ANF-R/guanylate cyclase sequences by hybridization with a rat brain guanylate cyclase/ANF-R cDNA probe. The amino acid sequence deduced from the cDNA shows that murine guanylate cyclase/ANF-R cDNA consists of 1057 amino acids with 21 amino acids comprising the transmembrane domain which separates an extracellular ligand-binding domain (469 amino acid residues) and an intracellular guanylate cyclase domain (567 amino acid residues). Upon transfection of the murine guanylate cyclase/ANF-R cDNA in COS-7 cells, the expressed protein showed specific binding to 125I-ANF, stimulation of guanylate cyclase activity and production of intracellular cGMP in response to ANF. The expression of guanylate cyclase/ANF-R cDNA transfected in rat Leydig tumor cells stimulated the production of testosterone and intracellular cGMP after treatment with ANF. The results presented herein directly show that ANF can regulate the testicular steroidogenic responsiveness in addition to its known regulatory role in the control of cardiovascular homeostasis.  相似文献   

14.
The distribution and nature of 125I-atrial natriuretic peptide binding sites have been examined in the brain and pituitary gland of the toad, Bufo marinus, using tissue section autoradiography, affinity cross-linking and electrophoresis, guanylyl cyclase assays and molecular analysis of natriuretic peptide receptor C (NPR-C) and NPR-GC mRNA expression. The highest density of 125I-atrial natriuretic peptide binding sites occurred in the dorsal pallium, the habenular region, the torus semicircularis, the choroid plexus, and the pituitary gland. Less dense binding was observed in the medial pallium, the thalamic region, the hypothalamus, the optic tectum, and the interpeduncular nucleus. The natriuretic peptide receptor-C specific ligand, C-ANF, displaced the binding in all brain regions; however, some residual binding was observed in the habenular region, the hypothalamus, the choroid plexus, and the pituitary gland. In isolated brain membranes, 1 microM rat atrial natriuretic peptide increased cyclic guanosine monophosphate levels to 90% above basal. Affinity cross-linking followed by reducing electrophoresis showed that 125I-atrial natriuretic peptide bound to proteins of 65 kDa and 135 kDa respectively. Furthermore, molecular analysis demonstrated that natriuretic peptide receptor-C and guanylyl cyclase messenger ribonucleic acid are expressed in the brain. In combination with the autoradiography, the data indicated that atrial natriuretic peptide acting via specific receptors could be important in natriuretic peptide regulation of the brain.  相似文献   

15.
The appearance and the modification of the gill apparatus in Rana dalmatina tadpoles have been described in the different phases of larval development. The morphology and ultrastructure have been studied using light microscopy and both scanning and transmission electron microscopy. The organization of the gills during the initial phases of development (external gills or transient gills) brings to mind the characteristics of Urodela larvae in which the gills appear to consist of three tufts of filaments supported by the gill arches III, IV and V. The cellular composition of the transient gills appears to be extremely simple and the presence of specialized cells is not noted. Basal cells, pavement cells and ciliated cells form the thin mono- or bilayered epithelium. In the persistent gills (or internal gills) of the R. dalmatina tadpole (Ortons larval type 4) the gill arches carry four rows of gill tufts branching out to the ventral region. Meanwhile, from the dorsal portion of the arch the gill filters present an axial portion from which there is much branching out, which confers a characteristic appearance on this part of the gills. The cellular composition of the gill tufts and of the filters is different: in the gill tufts basal cells, pavement cells, ciliated cells, cubic cells and mitochondria-rich cells (MRCs) have been recognized, while in the gill filters the last cellular type does not appear. The MRC has highly variable forms and dimensions and is characterized by the presence of numerous mitochondria in the cytoplasm. Often the MRCs manifest themselves grouped together, in groups of three or more. The pavement cells and the cubic cells demonstrate identical ultrastructural characteristics and have an external surface area characterized by the presence of short superficial microridges and numerous vacuoles in the apical cytoplasm.  相似文献   

16.
A cDNA clone for the membrane form of guanylate cyclase has been isolated from the testis of the sea urchin Strongylocentrotus purpuratus. An open reading frame predicts a protein of 1125 amino acids including an apparent signal peptide of 21 residues; a single transmembrane domain of 25 amino acids divided the mature protein into an amino-terminal, extracellular domain of 485 amino acids and a carboxyl domain of 594 intracellular amino acids. Three potential Asn-linked glycosylation sites were present in the proposed extracellular domain. The deduced protein sequence was homologous to the protein kinase family and contained limited but significant regions of identity with a low molecular weight atrial natriuretic peptide receptor. The carboxyl region (202 amino acids) was 42% identical with a subunit of the cytoplasmic form of guanylate cyclase recently cloned from bovine lung (Koesling, D., Herz, J., Gausepohl, H., Niroomand, F., Hinsch, K.-D., Mulsch, A., Bohme, E., Schultz, G., and Frank, R. (1988) FEBS Lett. 239, 29-34). Therefore, the membrane form of guanylate cyclase is a member of an apparently large family of proteins that includes the low molecular weight atrial natriuretic peptide receptor, the soluble form of guanylate cyclase and protein kinases.  相似文献   

17.
CaCl2 inhibited ATP-stimulated guanylate cyclase activity, but had little effect on basal and atrial natriuretic factor-stimulated guanylate cyclase activity in rat lung membranes. LaCl3 had similar effects as CaCl2 on basal and stimulated guanylate cyclase activity. LiCl and other monovalent salts inhibited ATP-stimulated guanylate cyclase activity more than basal enzyme activity. However, atrial natriuretic factor somehow stabilized the enzyme against the inhibitory effect of LiCl. These results suggest that ATP and atrial natriuretic factor activate the enzyme through different mechanisms. Since the effect of calcium on guanylate cyclase activity is different from that of monovalent salts and can be mimicked by lanthanum, it may be mediated by a specific calcium binding site or binding protein.  相似文献   

18.
We studied the cytochemical localization of particulate guanylate cyclase (GC) activity after stimulation with atrial natriuretic factor (ANF) in rat lung, at the electron microscope level. Samples incubated in the absence of ANF did not reveal any GC reaction product. These results indicate that ANF is a strong activator of the enzyme in this organ. In intrapulmonary bronchi, the ANF-activated GC reaction product was localized on mucus secreting goblet cells. GC was seen in bronchioles, alveoli and capillaries. All of the GC reaction product was associated with plasma membranes of Clara cells, of great alveolar cells and of endothelial cells in alveolar capillaries. Our data suggest that, by activation of particulate GC, ANF acts directly on cells where Na+ reabsorption occurs.  相似文献   

19.
The nature and regulation of atrial natriuretic peptide (ANP)-sensitive guanylate cyclase in rat renal glomerular membranes was examined. By affinity crosslinking techniques, three bands with apparent molecular masses of 180, 130 and 64 kDa were specifically labeled with [125I]ANP. A specific antibody to the 180 kDa membrane guanylate cyclase of rat adrenocortical carcinoma recognized a 180 kDa band on Western blot analysis of solubilized, GTP-affinity purified glomerular membrane proteins. The same antibody completely inhibited ANP-stimulated guanylate cyclase activity in glomerular membrane fractions. Partially purified protein kinase C inhibited ANP-stimulated guanylate cyclase activity in glomerular membrane fractions. It is concluded that a 180 kDa ANP-sensitive guanylate cyclase is present in glomerular membranes, and that this enzyme is inhibited directly by protein kinase C.  相似文献   

20.
The natriuretic agent amiloride induces a shift of the dose-response curve of particulate guanylate cyclase to atrial natriuretic factor (ANF) to the left. The ANF concentration for half-maximal activation of guanylate cyclase is shifted from 20 to 3 nM in the presence of 100 microM amiloride. This effect is observed with GTP*Mn2+, but not with GTP*Mg2+ as substrate. Amiloride derivatives, which inhibit a specific Na+-channel, also shift the dose-response curve to the left. These data suggest that some of the effects of amiloride may be mediated by an increased sensitivity of particulate guanylate cyclase to ANF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号