首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Injury or injection of live bacteria into third instar larvae of the dipteran insect Phormia terranovae results in the appearance in the haemolymph of at least five groups of heat-stable, more or less basic peptides with antibacterial activity against Escherichia coli. Three of these peptides have been purified. The amino acid sequence has been completely established for one of these and partially (first 40 residues from the N-terminus) for the two others. The sequences show marked homologies indicating that the three peptides belong to a common family. They are not related to other known antibacterial peptides from insects [lysozymes, cecropins (including sarcotoxin I) and attacins]. We propose the name of diptericins for this new family of antibiotic molecules.  相似文献   

3.
Diptericin A is a member of a multigenic family of antibacterial peptides that are synthesized by larvae of Phormia terranovae (Diptera) in response to a bacterial injection or to injury. The 82-residue peptide is active only against a limited range of Gram-negative bacteria. Data presented suggest that the primary action of diptericin A is on the cytoplasmic membrane of growing bacteria.  相似文献   

4.
Injection of heat-killed bacteria into larvae of the large tenebrionid beetle Zophobas atratus (Insecta, Endopterygota, Coleoptera) results in the appearance in the hemolymph of a potent antibacterial activity as evidenced by a plate growth inhibition assay. We have isolated three peptides (A-C) from this immune hemolymph which probably account for most of this activity. Their primary structures were established by a combination of peptide sequencing and molecular mass determination by mass spectrometry. Peptide A, which is bactericidal against Gram-negative cells, is a 74-residue glycine-rich molecule with no sequence homology to known peptides. We propose the name coleoptericin for this novel inducible antibacterial peptide. Peptides B and C are isoforms of a 43-residue peptide which contains 6 cysteines and shows significant sequence homology to insect defensins, initially reported from dipteran insects. This peptide is active against Gram-positive bacteria. The results are discussed in connection with recent studies on inducible antibacterial peptides present in the three other major orders of the endopterygote clade of insects: the Lepidoptera, Diptera, and Hymenoptera.  相似文献   

5.
6.
In response to microbial infection or mechanical injury, larvae of the fly, Phormia terranovae (Diptera), can induce de novo production of a group of antibacterial proteins including: peak I protein, diptericin A, diptericin B, diptericin C, and peak V protein. Administration of L-canavanine at the time of mechanical injury results in the incorporation of this arginine antagonist into these proteins. Canavanine replacement for arginine causes a total loss of detectable antibacterial activity for diptericin B and diptericin C, whereas diptericin A and peak V protein are severely inhibited. This loss in biological activity occurs in spite of the fact that canavanine stimulates induced protein synthesis. Analysis of the hydrolysate of diptericin A reveals that one-third of the 3 arginyl residues are replaced by canavanine. This investigation provides the first evidence that canavanine incorporation into a protein can impair its function.  相似文献   

7.
Diptericins are antibacterial polypeptides which are strongly induced in the fat body and blood cells of dipteran insects in response to septic injury. The promoter of the single-copy, intronless diptericin gene of Drosophila contains several nucleotide sequences homologous to mammalian cis-regulatory motifs involved in the control of acute phase response genes. Extending our previous studies on the expression of the diptericin gene, we now report a quantitative analysis of the contribution of various putative regulatory elements to the bacterial inducibility of this gene, based on the generation of 60 transgenic fly lines carrying different elements fused to a reporter gene. Our data definitively identify two Kappa B-related motifs in the proximal promoter as the sites conferring inducibility and tissue-specific expression to the diptericin gene. These motifs alone, however, mediate only minimal levels of expression. Additional proximal regulatory elements are necessary to attain some 20% of the full response and we suspect a role for sequences homologous to mammalian IL6 response elements and interferon-gamma responsive sites in this up-regulation. The transgenic experiments also reveal the existence of a distal regulatory element located upstream of -0.6 kb which increases the level of expression by a factor of five.  相似文献   

8.
9.
Six closely related antibacterial proteins, attacins A-F, were isolated from the hemolymph of immunized pupae of the Cecropia moth, Hyalophora cecropia. Chromatofocusing separated attacins A-F, with isoelectric points between 5.7 and 8.3. Immunological experiments show that the attacins constitute antibacterially active forms of the previously isolated inducible immune protein P5. Their mol. wts., 20-23 K, are similar to that of protein P5, but significantly lower than 28 K found for preP5 synthesized in vitro (see accompanying paper). The six attacins can be divided into two groups according to their amino acid composition and amino-terminal sequences, attacins A-D constitute a basic group and attacins E and F an acidic one. Within each group the forms are very similar. The attacins efficiently killed Escherichia coli and two other Gram-negative bacteria isolated from the gut of a silk worm but they did not act on other Gram-positive and Gram-negative bacteria tested. Only growing cells of E. coli were attacked; cells suspended in phosphate buffer were inert. Besides the cecropins and lysozyme, the attacins represent a third class of antibacterial proteins in the humoral immune system of H. cecropia.  相似文献   

10.
We purified and characterized three structurally related antibacterial peptides with a molecular mass of 8 kDa (acaloleptins A1, A2, and A3) from the hemolymph of immunized larvae of the Udo longicorn beetle, Acalolepta luxuriosa. These peptides have the same 6 N-terminal amino acid residues and show potent antibacterial activity against some Gram-negative bacteria. The three peptides are thought to be isoforms. Reverse phase HPLC analysis of the hemolymph of immunized and naive larvae showed that acaloleptins A1, A2, and A3 were inducible and suggested that all three peptides were produced in a single insect. We determined the complete amino acid sequence of acaloleptin A1: Acaloleptin A1 consists of 71 amino acid residues and shares significant sequence similarity with coleoptericin and holotricin 2, which were isolated from other coleopteran insects. Furthermore, the 29 C-terminal residues of acaloleptin A1 had 40% identity with the 30 C-terminal residues of hymenoptaecin found in honeybees. Arch. Insect Biochem.  相似文献   

11.
Two novel antimicrobial peptides, which we propose to name termicin and spinigerin, have been isolated from the fungus-growing termite Pseudacanthotermes spiniger (heterometabole insect, Isoptera). Termicin is a 36-amino acid residue antifungal peptide, with six cysteines arranged in a disulfide array similar to that of insect defensins. In contrast to most insect defensins, termicin is C-terminally amidated. Spinigerin consists of 25 amino acids and is devoid of cysteines. It is active against bacteria and fungi. Termicin and spinigerin show no obvious sequence similarities with other peptides. Termicin is constitutively present in hemocyte granules and in salivary glands. The presence of termicin and spinigerin in unchallenged termites contrasts with observations in evolutionary recent insects or insects undergoing complete metamorphosis, in which antimicrobial peptides are induced in the fat body and released into the hemolymph after septic injury.  相似文献   

12.
Two novel antimicrobial peptides named theromacin and theromyzin were isolated and characterized from the coelomic liquid of the leech Theromyzon tessulatum. Theromacin is a 75-amino acid cationic peptide containing 10 cysteine residues arranged in a disulfide array showing no similarities with other known antimicrobial peptides. Theromyzin is an 86-amino acid linear peptide and constitutes the first anionic antimicrobial peptide observed in invertebrates. Both peptides exhibit activity directed against Gram-positive bacteria. Theromacin and theromyzin cDNAs code precursor molecules containing a putative signal sequence directly followed by the mature peptide. The enhancement of theromacin and theromyzin mRNA levels has been observed after blood meal ingestion and upon bacterial challenge. In situ hybridization revealed that both genes are expressed in large fat cells in contact with coelomic cavities. Gene products were immunodetected in large fat cells, in intestinal epithelia, and at the epidermis level. In addition, a rapid release of the peptides into the coelomic liquid was observed after bacterial challenge. The presence of antimicrobial peptide genes in leeches and their expression in a specific tissue functionally resembling the insect fat body provide evidence for the first time of an antibacterial response in a lophotrochozoan comparable to that of holometabola insects.  相似文献   

13.
Lepidoptera have been reported to produce several antibacterial peptides in response to septic injury. However, in marked contrast to other insect groups, no inducible antifungal molecules had been described so far in this insect order. Surprisingly, also cysteine-rich antimicrobial peptides, which predominate in the antimicrobial defense of other insects, had not been discovered in Lepidoptera. Here we report the isolation from the hemolymph of immune induced larvae of the lepidopteran Heliothis virescens of a cysteine-rich molecule with exclusive antifungal activity. We have fully characterized this antifungal molecule, which has significant homology with the insect defensins, a large family of antibacterial peptides directed against Gram-positive strains. Interestingly, the novel peptide shows also similarities with the antifungal peptide drosomycin from Drosophila. Thus, Lepidoptera appear to have built their humoral immune response against bacteria on cecropins and attacins. In addition, we report that Lepidoptera have conferred antifungal properties to the well conserved structure of antibacterial insect defensins through amino acid replacements.  相似文献   

14.
15.
The injection of low doses of bacteria into the aquatic larvae of dragonflies (Aeschna cyanea, Odonata, Paleoptera) induces the appearance in their hemolymph of a potent antibacterial activity. We have isolated a 38-residue peptide from this hemolymph which is strongly active against Gram-positive bacteria and also shows activity against one of the Gram-negative bacteria which was tested. The peptide is a novel member of the insect defensin family of inducible antibacterial peptides, which had so far only been reported from the higher insect orders believed to have evolved 100 million years after the Paleoptera. Aeschna defensin is more potent than defensin from the dipteran Phormia, from which its structure differs in several interesting aspects, which are discussed in the paper.  相似文献   

16.
The attacins are antibacterial proteins present in the hemolymph of the pupae of the silk moth Hyalophora cecropia after bacterial infection. We present the primary structure of one attacin, the F form. We show that this protein is derived by proteolysis from the native protein, attacin E. Using a method for rapid purification from the hemolymph of immunized pupae of the neutral attacin E and a basic attacin, both proteins were found in freshly collected immune hemolymph. We conclude that they are the native products of two attacin genes, the existence of which was inferred from the isolation of two cDNA clones as described in the accompanying paper. The two proteins, which differed in their pIs (7 and 9), were found to have similar mol. wts. (20 000) and closely related primary structures, displaying a total of 40 amino acid substitutions, 12 of which were of a non-conservative nature.  相似文献   

17.
K A Winans  D S King  V R Rao  C R Bertozzi 《Biochemistry》1999,38(36):11700-11710
Insects protect themselves against bacterial infection by secreting a battery of antimicrobial peptides into the hemolymph. Despite recent progress, important mechanistic questions, such as the precise bacterial targets, the nature of any cooperation that occurs between peptides, and the purpose of multiple peptide isoforms, remain largely unanswered. We report herein the chemical synthesis and preliminary mechanistic investigation of diptericin, an 82 residue glycopeptide that contains regions similar to two different types of antibacterial peptides. A revised, highly practical synthesis of the precursor N(alpha)-Fmoc-Thr(Ac(3)-alpha-D-GalNAc) allowed us to produce sufficient quantities of the glycopeptide for mechanistic assays. The synthetic, full-length polypeptide proved to be active in growth inhibition assays with an IC(50) of approximately 250 nM, a concentration similar to that found in the insect hemolymph. Biological analysis of diptericin fragments indicated that the main determinant of antibacterial activity lay in the C-terminal region that is similar to the attacin peptides, although the N-terminal segment, related to the proline-rich family of antibacterial peptides, augmented that activity by 100-fold. In all assays, activity appeared glycosylation independent. Circular dichroism of unglycosylated diptericin indicated that the peptide lacked structure both in plain buffer and in the presence of liposomes. Diptericin increased the permeability of the outer and inner membranes of Escherichia coli D22 cells, suggesting possible mechanisms of action. The ability to access glycopeptides of this type through chemical synthesis will facilitate further mechanistic studies.  相似文献   

18.
Summary Three DNA sequences encoding the antimicrobial peptides bombinin, cecropin and magainin were synthesised. DNA fragments were cloned into pET-21d plasmid under T7 promoter for expression in vivo and in vitro and into pRIT-2T plasmid for expression as a fusion product with protein A. The polypeptides synthesised in both systems possess antibacterial activity.  相似文献   

19.
We synthesized cyclic disulfide-bonded (i, i+4) peptides with various net positive charges (+2-+5) from linear peptides derived from the alpha helical domain of Tenecin 1, an insect defensin, and investigated the effect of the intradisulfide bridge (i, i+4) on hydrophobicity, secondary structure, leakage activity and binding activity for large unilamellar vesicles, antimicrobial activity, and hemolytic activity. Intradisulfide bridge formation of the peptides resulted in the increase of amphiphilicity and hydrophobicity. Cyclic forms of the peptides did not deeply penetrate into PG/PC (1:1, mole ratio) large unilamellar vesicles and had a decreased lipid membrane perturbation activity for PG/PC LUVs. When the peptides interacted with PG/CL (2:1, mole ratio) LUVs, cyclic peptides with a high net positive charge (+4-+5) showed similar binding affinities and leakage activities for vesicles to those of linear forms, whereas cyclic peptides with a low net positive charge (+2-+3) exhibited lower leakage activity than their linear forms. CD spectra indicate that the intradisulfide bridge (i, i+4) provided little conformational constraint to linear peptides in buffer solution but resulted in the decrease of alpha helicity of the peptides in lipid membrane mimic conditions. The cyclic peptide with the highest net positive charge had a similar antibacterial activity to that of the linear peptide, whereas the cyclic peptides with a low net positive charge (+3-+4) exhibited lower antibacterial activity than their linear forms. The cyclic peptides of an appropriate net charge showed more potent activities against some bacteria than those of linear forms under high salt conditions.  相似文献   

20.
We have used a parasitoid wasp Drosophila melanogaster system to investigate the relationship between the humoral and cellular immune responses in insects. Expression of the gene encoding diptericin, an antibacterial peptide in various D. melanogaster strains parasitized by several species of parasitoid wasps, was studied by Northern blot. These strains have the capacity to encapsulate parasitoid eggs. Two strains appeared to produce diptericin mRNA after parasitoid challenge, regardless of their cellular immune reaction to the wasp species. This suggests that a specific genetic factor, or factors, here designated humoral response to parasitoid (hrtp), is present in these two strains of D. melanogaster and is implicated in the expression of the antibacterial gene after parasite infection. This hrtp genetic factor is recessively expressed and located on the second chromosome, suggesting that it is monofactorial. The transgenic strain Dipt.2.2-lacZ:1, in which the transgene is present on the first chromosome, is normally susceptible to the parasitoid wasp. The chromosome bearing the hrtp factor was transferred to this transgenic strain, which then became reactive when triggered by wasp infection. The hrtp factor appears necessary for the activation of diptericin by the parasitoid wasp. No correlation between the cellular immune capacity and the humoral response was observed, suggesting that the two components of insect immunity are regulated independently. Arch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号