首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Inflammatory bowel disease arises from the interplay between luminal bacteria and the colonic mucosa. Targeted inhibition of pro-inflammatory pathways without global immunosuppression is highly desirable. Apolipoprotein (apo) E has immunomodulatory effects and synthetically derived apoE-mimetic peptides are beneficial in models of sepsis and neuroinflammation. Citrobacter rodentium is the rodent equivalent of enteropathogenic Escherichia coli, and it causes colitis in mice by colonizing the surface of colonic epithelial cells and inducing signaling events. We have reported that mice deficient in inducible nitric-oxide (NO) synthase (iNOS) have attenuated C. rodentium-induced colitis. We used young adult mouse colon (YAMC) cells that mimic primary colonic epithelial cells to study effects of an antennapedia-linked apoE-mimetic peptide, COG112, on C. rodentium-activated cells. COG112 significantly attenuated induction of NO production, and iNOS mRNA and protein expression, in a concentration-dependent manner. COG112 inhibited the C. rodentium-stimulated induction of iNOS and the CXC chemokines KC and MIP-2 to the same degree as the NF-kappaB inhibitors MG132 or BAY 11-7082, and there was no additive effect when COG112 and these inhibitors were combined. COG112 significantly reduced nuclear translocation of NF-kappaB, when assessed by electromobility shift assay, immunoblotting, and immunofluorescence for p65. This correlated with inhibition of both C. rodentium-stimulated IkappaB-alpha phosphorylation and degradation, and IkappaB kinase activity, which occurred by inhibition of IkappaB kinase complex formation rather than by a direct effect on the enzyme itself. These studies indicate that apoE-mimetic peptides may have novel therapeutic potential by inhibiting NF-kappaB-driven proinflammatory epithelial responses to pathogenic colonic bacteria.  相似文献   

5.
Kumar A  Negi G  Sharma SS 《Biochimie》2012,94(5):1158-1165
Inflammation is an emerging patho-mechanism of diabetes and its complications. NF-κB pathway is one of the central machinery initiating and propagating inflammatory responses. The present study envisaged the involvement of NF-κB inflammatory cascade in the pathophysiology of diabetic neuropathy using BAY 11-7082, an IκB phosphorylation inhibitor. Streptozotocin was used to induce diabetes in Sprauge Dawley rats. BAY 11-7082 (1 &; 3 mg/kg) was administered to diabetic rats for 14 days starting from the end of six weeks post diabetic induction. Diabetic rats developed deficits in nerve functions and altered nociceptive parameters and also showed elevated expression of NF-κB (p65), IκB and p-IκB along with increased levels of IL-6 &; TNF-α and inducible enzymes (COX-2 and iNOS). Furthermore, there was an increase in oxidative stress and decrease in Nrf2/HO-1 expression. We observed that BAY 11-7082 alleviated abnormal sensory responses and deficits in nerve functions. BAY 11-7082 also ameliorated the increase in expression of NF-κB, IκB and p-IκB. BAY 11-7082 curbed down the levels of IL-6, TNF-α, COX-2 and iNOS in the sciatic nerve. Lowering of lipid peroxidation and improvement in GSH levels was also seen along with increased expression of Nrf2/HO-1. Thus it can be concluded that NF-κB expression and downstream expression of proinflammatory mediators are prominent features of nerve damage leading to inflammation and oxidative stress and BAY 11-7082 was able to ameliorate experimental diabetic neuropathy by modulating neuroinflammation and improving antioxidant defence.  相似文献   

6.
7.
8.
9.
10.
The role of p44/42 mitogen-activated protein kinase (MAPK) in the expression of intercellular adhesion molecule-1 (ICAM-1) in NCI-H292 cells, a human bronchial epithelial cell line, was analyzed. Treatment with the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) (16.2 nM) or interferon-gamma (IFN-gamma) (100 U/ml) induced phosphorylation of p44/42 MAPK. The MEK inhibitor U0126 (0.1 to 10 microM) enhanced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. U0126 also enhanced the ICAM-1 expression induced by two other PKC activators teleocidin (22.5 nM) and aplysiatoxin (14.9 nM). Furthermore, PD98059 (0.5 to 50 microM), another MEK inhibitor, enhanced the TPA-induced ICAM-1 expression as well. The inhibitor of p38 MAPK SB203580 did not affect the TPA-induced ICAM-1 expression. BAY11-7082, an inhibitor of nuclear factor kappaB (NF-kappaB) activation, and MG132, a 26S proteasome inhibitor, reduced the TPA-induced ICAM-1 expression but not the IFN-gamma-induced one. TPA partially decreased the level of IkappaB-alpha and the reduction was further augmented by U0126 in a concentration-dependent manner. These findings suggested that, in NCI-H292 cells, p44/42 MAPK suppresses PKC activator-induced NF-kappaB activation, thus negatively regulating the PKC activator-induced ICAM-1 expression but not the IFN-gamma-induced one.  相似文献   

11.
12.
13.
Multiple myeloma (MM) displays an NFκB activity-related gene expression signature and about 20% of primary MM samples harbor genetic alterations conducive to intrinsic NFκB signaling activation. The relevance of blocking the classical versus the alternative NFκB signaling pathway and the molecular execution mechanisms involved, however, are still poorly understood. Here, we comparatively tested NFκB activity abrogation through TPCA-1 (an IKK2 inhibitor), BAY 11-7082 (an IKK inhibitor poorly selective for IKK1 and IKK2), and MLN4924 (an NEDD8 activating enzyme (NAE)-inhibitor), and analyzed their anti-MM activity. Whereas TPCA-1 interfered selectively with activation of the classical NFκB pathway, the other two compounds inhibited classical and alternative NFκB signaling without significant discrimination. Noteworthy, whereas TPCA-1 and MLN4924 elicited rather mild anti-MM effects with slight to moderate cell death induction after 1 day BAY 11-7082 was uniformly highly toxic to MM cell lines and primary MM cells. Treatment with BAY 11-7082 induced rapid cell swelling and its initial effects were blocked by necrostatin-1 or the ROS scavenger BHA, but a lasting protective effect was not achieved even with additional blockade of caspases. Because MLN4924 inhibits the alternative NFκB pathway downstream of IKK1 at the level of p100 processing, the quite discordant effects between MLN4924 and BAY 11-7082 must thus be due to blockade of IKK1-mediated NFκB-independent necrosis-inhibitory functions or represent an off-target effect of BAY 11-7082. In accordance with the latter, we further observed that concomitant knockdown of IKK1 and IKK2 did not have any major short-term adverse effect on the viability of MM cells.  相似文献   

14.
15.
The promoter of the mouse inducible nitric oxide synthase (iNOS) has a putative octamer motif (ATGCAAAA) which exists 24 bp upstream from the TATA box and is mismatched at a single residue from the consensus octamer motif. To examine whether this site is involved in iNOS expression, we constructed various deletions and site-directed mutants of the iNOS promoter linked to the chloramphenicol acetyltransferase (CAT) reporter gene, transfected the constructs into RAW 264.7 macrophages, and stimulated the cells with interferon-gamma (IFN-gamma) and/or lipopolysaccharide (LPS). CAT activity was not induced by LPS in constructs containing only the octamer motif (-71 to +82), but was induced with constructs containing the octamer motif and the upstream sequences of the NF-kappaB site (-91 to +82). However, a site-directed mutation of the octamer motif in the context of the -91 to +82 promoter construct or an extended promoter construct (-1542 to +82) abolished IFN-gamma and/or LPS-induced CAT activity. Similar results were obtained from site-directed mutants at either the NF-kappaB site or both the NF-kappaB site and octamer motif in these two constructs. In addition, we demonstrated that the conversion of the iNOS octamer motif into a consensus sequence increased CAT activity. Electrophoretic mobility shift assay (EMSA) performed with the NF-kappaB site or the octamer motif-containing oligonucleotide probe revealed that NF-kappaB binding was induced by LPS treatment, while the Oct-1 binding was constitutive. Competition assays performed with octamer-related oligonucleotide competitors derived from the immunoglobulin-kappaB or SV40 promoter confirmed the identity of the iNOS promoter sequence as being a Oct-1 binding site. EMSA carried out using a probe containing both the NF-kappaB site and the octamer motif identified two LPS-induced complexes. Competition assays with each NF-kappaB site or octamer motif competitor revealed that NF-kappaB and Oct-1 were present in these two complexes. These data suggest that, besides the NF-kappaB site, the octamer motif is essential for the maximal expression of the iNOS gene in murine macrophages, and the direct interaction of Oct-1 and NF-kappaB is important for the regulation of this gene.  相似文献   

16.
17.
为探讨解脲脲原体(Uu)的脂质相关膜蛋白(LAMPs)诱导小鼠巨噬细胞表达诱导性一氧化氮合酶(iNOS)的分子机制,从解脲脲原体提取的脂质相关膜蛋白,刺激小鼠巨噬细胞,以RT_PCR、Western blot等方法分析iNOS的表达及NO的产生;用细胞免疫化学、间接免疫荧光及Western blot等方法检测核因子κB(NF_κB)的激活,另外检测了NF_κB的特异性抑制剂二硫代氨基甲酸吡咯烷(PDTC)和蛋白酶抑制剂放线菌酮(CHX)对iNOS的表达及NF_κB激活的影响。结果表明,解脲脲原体的LAMPs通过激活NF_κB诱导小鼠巨噬细胞表达iNOS的mRNA和蛋白,且能以时间和剂量依赖方式刺激小鼠巨噬细胞产生NO,NF_κB的抑制剂PDTC或蛋白酶抑制剂放线菌酮(CHX),可抑制NF_κB的激活及iNOS的表达。由于解脲脲原体的脂质相关膜蛋白通过激活NF_κB诱导小鼠巨噬细胞表达iNOS和产生NO,因而可能是一个重要的致病因素。  相似文献   

18.
19.
In cultured rat vascular smooth muscle cells, sustained activation of ERK is required for interleukin-1beta to persistently activate NF-kappaB. Without ERK activation, interleukin-1beta induces only acute and transient NF-kappaB activation. The present study examined whether the temporal control of NF-kappaB activation by ERK could differentially regulate the expression of NF-kappaB-dependent genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), vascular cell adhesion molecule-1 (VCAM-1), and manganese-containing superoxide dismutase (Mn-SOD). Treatment of vascular smooth muscle cells with interleukin-1beta induced the expression of iNOS, COX-2, VCAM-1, and Mn-SOD in a time-dependent manner, but with different patterns. Either PD98059 or U0126, selective inhibitors of MEK, or overexpression of a dominant negative MEK-1 inhibited interleukin-1beta- induced ERK activation and the expression of iNOS and COX-2 but had essentially no effect on the expression of VCAM-1 and Mn-SOD. The expression of these genes was inhibited when NF-kappaB activation was down-regulated by MG132, a proteasome inhibitor, or by overexpression of an I-kappaBalpha mutant that prevented both the transient and the persistent activation of NF-kappaB. Inhibition of ERK did not affect interleukin-1beta-induced I-kappaBalpha phosphorylation and degradation but attenuated I-kappaBbeta degradation. Thus, although NF-kappaB activation was essential for interleukin-1beta induction of each of the proteins studied, gene expression was differentially regulated by ERK and by the duration of NF-kappaB activation. These results reveal a novel functional role for ERK as an important temporal regulator of NF-kappaB activation and NF-kappaB-dependent gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号