首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure was developed for the quantitation of solubilized proteins using the Bradford assay in the presence of glucopyranoside detergents. These detergents solubilized membrane-bound proteins with minimal background absorbance at 595 nm. Absorbance at 650 nm was also low, indicating that these detergents do not significantly stabilize the neutral species of Coomassie brilliant blue G-250 that produces interference in the presence of other detergents. Hexyl-beta-D-glucopyranoside produced less absorbance than did larger glucopyranosides, and the increase in its absorbance at 595 nm in the presence of dye reagent was related linearly to its concentration from 0 to 2%. Absorbance produced by membrane-bound protein was increased by the presence of up to 0.2% hexyl-beta-D-glucopyranoside (final concentration in dye reagent) and then remained stable up to 1%, indicating that these concentrations of this detergent allowed membrane-bound proteins to react completely with the dye reagent. Standard curves of several proteins were similar in the absence or presence of 0.1-0.5% hexyl-beta-D-glucopyranoside. The quantitation of both soluble and membrane-bound proteins by the Bradford assay was similar in the presence of 0.2% hexyl-, heptyl-, and octyl-beta-D-glucopyranoside. Estimates of membrane-bound protein by this assay agreed with estimates obtained with the Lowry assay and with quantitative amino acid analysis. This procedure requires no extra steps; thus, it is as rapid and convenient as the original Bradford protein assay.  相似文献   

2.
Two different artificial chaperone systems were evaluated in this work using either detergents or CDs as the stripping agents. Upon dilution of urea-denatured α-amylase to a non-denaturing urea concentration in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to remove the detergent molecules. Our results by fluorescence, UV, turbidity measurement, circular dichroism, surface tension and activity assay indicated that the extent of refolding assistance was different due to different inter- and intra- molecular interactions in the two different systems. However, the high activity recovery in the presence of detergents, as the stripping agent, suggests that they can constitute suitable replacement for the more expensive and common stripping agent of cyclodextrins.  相似文献   

3.
We describe a dye-metal (polyhydroxybenzenesulfonephthalein-type dye and a transition metal) complex-based total protein determination method. The binding of the complex to protein causes a shift in the absorption maximum of the dye-metal complex from 450 to 660 nm. The dye-metal complex has a reddish brown color that changes to green on binding to protein. The color produced from this reaction is stable and increases in a proportional manner over a broad range of protein concentrations. The new Pierce 660 nm Protein Assay is very reproducible, rapid, and more linear compared with the Coomassie dye-based Bradford assay. The assay reagent is room temperature stable, and the assay is a simple and convenient mix-and-read format. The assay has a moderate protein-to-protein variation and is compatible with most detergents, reducing agents, and other commonly used reagents. This is an added advantage for researchers needing to determine protein concentrations in samples containing both detergents and reducing agents.  相似文献   

4.
We have developed a high-performance capillary electrophoresis (HPCE) method to analyze the retinol (vitamin A) concentration as retinol-retinol binding protein (holo-RBP) from microvolumes of serum (5–10 μl) or one to two drops (∼20 μl) of blood collected and air-dried on blood collection filter paper. A 0.64-cm diameter disk was cut from the dried whole blood specimens and the samples were dissolved in a pretreatment buffer and filtered. Filtrate was injected onto the HPCE column for analysis. The separation was carried out in a 60 cm × 50 μm I.D. fused-silica capillary and the running voltage was 20 kV. A HeCd laser with a wavelength of 325 nm was used for excitation, and the fluorescence of the holo-RBP complex was monitored at 465 nm by a photodiode. A virtual linear relationship was obtained for the retinol concentrations between HPCE and HPLC for 28 serum samples, 19 dried venous blood samples and 9 capillary dried blood spot samples, indicating that valid measures of serum retinol can be obtained from one to two drops of capillary blood collected on filter paper. The absolute detection limit for retinol by HPCE is below 3 μg/l. The method is very useful for vitamin A level screening, especially for children and premature new-born babies.  相似文献   

5.
CMP-N-acetylneuraminate:lactosylceramide alpha-2,3-sialyltransferase is tightly associated with the luminal side of the Golgi membrane as is its lipid substrate, lactosylceramide. In order to understand the kinetics, properties, and regulation of this enzyme, it is necessary to alter the amount and type of substrate in the membrane while minimizing changes in the membrane environment or in the conformation of the enzyme. Therefore, nonspecific lipid transfer protein, which accelerates the transfer of phospholipids, cholesterol, and glycosphingolipids between membranes was used to study the properties and kinetics of rat liver CMP-N-acetylneuraminate:lactosylceramide sialyltransferase. These results are compared to those obtained in parallel experiments using detergent-solubilized substrate. Enzyme activity was increased four- to fivefold by transfer protein and was consistently higher than the activity measured in the presence of detergents. In contrast to the results obtained with detergents, the enzyme activity increased linearly with both Golgi protein and with incubation time for up to 60 min. The Km values for the water-soluble substrate, CMP-neuraminic acid, were virtually identical when determined in the presence of transfer protein (0.23 mM) or detergents (0.27 mM). On the other hand, the apparent Km values for the lipophilic substrate, lactosylceramide, were markedly different when determined in the presence of transfer protein (47.9 microM) or in the presence of detergents (1.2 microM). These observations suggest that transfer protein is a useful tool to study the properties and kinetics of membrane-bound enzymes when both the enzyme and substrate are components of the same membrane.  相似文献   

6.
Methods for direct immunological identification of single protein components after fractionation of a protein mixture in microgels are described. Protein mixtures were separated with high resolution in polyacrylamide microgradient gels and transferred after electrophoresis into agarose layers containing suitable antisera. Monospecific as well as polyvalent antisera were used. The formation of immunoprecipitates could be observed within approx. 1 h. Immunoprecipitates are also formed in the presence of sodium dodecylsulfate or other detergents, thus allowing immunoreactions to be performed with water-insoluble proteins. Staining of the proteins in the gels did not completely inhibit the immunoreaction, while dansylation of proteins had no effect. The influence of different detergents e.g. sodium dodecylsulfate, Triton X-100, Brij 99, np-40 and urea, as well as different reducing agents e.g. mercaptoethanol, dithiothreitol, thioglycolic acid, on two-dimensional microdiffusion was also studied. When suitable concentrations of these compounds were used, the formation of immunocomplexes was observed within approx. 1 h. This technique can also be applied to immunoreactions with water-insoluble proteins dissolved in detergents.  相似文献   

7.
A highly sensitive and quantitative assay for measuring protein in solution based on the capacity of protein to bind silver is described. In this procedure, protein samples are first treated with glutaraldehyde and then exposed to ammoniacal silver. After 10 min, the reaction is terminated by the addition of sodium thiosulfate and the optical density measured at 420 nm. The useful range of the assay for the majority of standard proteins tested lies between 15 and 2000 ng. This represents a 100-fold increase in sensitivity over the Coomassie brilliant blue dye-binding procedure. There is little or no interference from carbohydrates, nonionic detergents, or ethanol, and pretreatment of protein samples with Bio-Gel P-2 to remove salts, thiol agents, EDTA, and sodium dodecyl sulfate makes this procedure compatible with most commonly used buffers. The cost in terms of silver utilization is nominal with a typical assay involving 10 samples tested in triplicate amounting to less than $0.02 U. S.  相似文献   

8.
We used a class of designed peptide detergents to stabilize photosystem I (PS-I) upon extended drying under N2 on a gold-coated-Ni-NTA glass surface. PS-I is a chlorophyll-containing membrane protein complex that is the primary reducer of ferredoxin and the electron acceptor of plastocyanin. We isolated the complex from the thylakoids of spinach chloroplasts using a chemical detergent. The chlorophyll molecules associated with the PS-I complex provide an intrinsic steady-state emission spectrum between 650 and 800 nm at -196.15 degrees C that reflects the organization of the pigment-protein interactions. In the absence of detergents, a large blue shift of the fluorescence maxima from approximately 735 nm to approximately 685 nm indicates a disruption in light-harvesting subunit organization, thus revealing chlorophyll-protein interactions. The commonly used membrane protein-stabilizing detergents, N-dodecyl-beta-D-maltoside and N-octyl-beta-D-glucoside, only partially stabilized the approximately 735-nm complex with approximately 685-nm spectroscopic shift. However, prior to drying, addition of the peptide detergent acetyl-AAAAAAK at increasing concentration significantly stabilized the PS-I complex. Moreover, in the presence of acetyl-AAAAAAK, the PS-I complex is stable in a dried form at room temperature for at least 3 wk. Another peptide detergent, acetyl-VVVVVVD, also stabilized the complex but to a lesser extent. These observations suggest that the peptide detergents may effectively stabilize membrane proteins in the solid-state. These designed peptide detergents may facilitate the study of diverse types of membrane proteins.  相似文献   

9.
An integral membrane glycoprotein of pig intestinal microvilli which exists in two polypeptide forms [mol. wt. 140 K and 200 K as measured by SDS-polyacrylamide gel electrophoresis (SDS-PAGE)] was purified to homogeneity and characterized. The 200-K form is probably a precursor of the 140-K species. We have localized the glycoprotein by electron microscope immunochemistry using specific antibodies and determined its topological organization with respect to the membrane bilayer. Triton X-100 treatments which solubilize most other microvillar membrane glycoproteins from purified, closed, right-side out vesicles do not efficiently extract this protein. The protein can be partially solubilized from the detergent-insoluble residue, either by treatment with proteases (trypsin or papain) or by exposure to low ionic strength buffer in the presence of chelating agents and detergents. Once solubilized by papain or trypsin, the protein co-migrates on SDS-PAGE with the protein obtained by low ionic strength extraction. However, the form of the protein released by papain does not bind detergents and exhibits hydrophilic properties. Our observations are consistent with the 140-K protein having a small hydrophobic domain that anchors it to the microvillar membrane. The 140-K glycoprotein binds in vitro to a 110-K protein of the core cytoskeleton residue. These observations suggest that the 140-K glycoprotein may be a transmembrane protein which may in vivo provide attachment sites for direct or indirect association with polypeptides of the microvillus cytoskeleton.  相似文献   

10.
We describe the synthesis of new perfluorinated dimerizable detergents which contain a tricationic or tetracationic (linear or branched spermine, respectively) polar head, and report on their cmc, their ability to condense DNA into cationic monomolecular DNA nanoparticles as well as on the in vitro transfection efficiency of these nanoparticles. Such cationic nanoparticles were prone to display efficient cell transfection properties as a result of increased contact to the anionic cell surface and internalization by endocytosis, low size compatible with improved intracellular diffusion and nuclear pore crossing, and the presence of amine function of low pK(a) for their endosomal escape. The challenge was to design polymerizable polycationic detergents that display a cmc high enough for the monomer to perform monomolecular DNA condensation (as cationic particles) and low enough for the dimer to form stable nanoparticles capable of efficient cell transfection. Although we succeeded in formulating small-sized cationic monomolecular DNA nanoparticles (<40 nm) with these dimerizable perfluorinated spermine-based detergents for N/P ratios of up to 5 (N=number of detergent amine equivalents/P=number of DNA phosphate equivalents), these small-sized cationic nanoparticles proved to be poor non-specific transfection agents in vitro, even in the presence of chloroquine. Their poor transfection potential could be due more likely to Brownian motion which prevents these very small-sized particles from sedimentation and adsorption onto the adherent cell monolayer, and, consequently, from proteoglycan-triggered endocytosis.  相似文献   

11.
Observations on Membranes of Mycoplasma laidlawii Strain B   总被引:3,自引:1,他引:2       下载免费PDF全文
The cytoplasmic membrane of Mycoplasma laidlawii strain B is solubilized by anionic and nonionic detergents, succinylation, phospholipase A, alkaline phosphatase, trypsin, and chymotrypsin. Cationic detergents are without effect, as are chelating agents, even in the presence of high concentrations of monovalent cation. The detergent-solubilized membrane exhibits one peak in the analytical ultracentrifuge, but the sedimentation coefficient is dependent upon concentration of detergent. Simple dialysis does not remove all of the sodium dodecylsulfate except from lipid-depleted membrane particles. Membranes bind sodium dodecylsulfate but acetone powders of membranes do not. Sulfated alcohols with chain lengths of C(14) and C(16) are more tightly bound than dodecylsulfate. A constant amount of di- and trivalent cation is bound by the membrane upon aggregation. Only a portion of this cation is removable with chelating agents. No chelating agent is bound by these aggregates. A portion of the lipid-depleted membrane particles is solubilized by negatively charged lipids and detergents, giving rise to aggregates in the presence of divalent cation. Fractionations of detergent-solubilized membranes by preparative gel electrophoresis and ammonium sulfate were inconclusive. Density gradient centrifugation of succinylated membranes yielded at least five fractions which exhibited homogeneity by ultracentrifugation. Analytical gel electrophoresis of these fractions demonstrated heterogeneity. The composition of these five fractions suggested separation of protein from lipid.  相似文献   

12.
The isolation of the acidic glycoproteins in mucous secretions is impeded by their low solubility and high viscosity in aqueous media. Mucin preparations have therefore been treated with alkali (1), detergents or reducing agents (2), boiling (3) or proteolytic enzymes (4,5) prior to conventional fractionation procedures. However, such agents may irreversibly alter the protein structure (1–5). In the present paper a fractionation method based on isoelectric focusing, and without sample pretreatment, is described.  相似文献   

13.
A prerequisite for the purification of any protein to homogeneity is that the protein is not non-specifically associated with other proteins especially during the final stage(s) of the fractionation procedure. This requirement is not so often fulfilled when nonionic detergents (for instance Triton X-100) are used for solubilization of membrane proteins. The reason is that these detergents are not efficient enough to prevent the protein of interest from forming aggregates with other proteins upon contact with chromatographic or electrophoretic supporting media, which, due to their polymeric nature, have a tendency to induce aggregation of other polymers, for instance, hydrophobic proteins. The aggregation can be avoided if sodium dodecyl sulfate (SDS) is employed as detergent. We therefore suggest that membrane proteins should be purified by conventional methods in the presence of SDS and that the purified proteins, which are in a denatured state, are allowed to renature. There is good change to renature internal membrane proteins since they should not be so susceptible to denaturation by detergents as are water-soluble proteins because the natural milieu of the former proteins is lipids which in fact are detergents. In this paper we present a renaturation method based on the removal of SDS by addition of a large excess of G 3707, a nonionic detergent. By this technique we have renatured a 5'-nucleotidase from Acholeplasma laidlawii and a neuraminidase from influenza virus. The enzyme activities were higher (up to 6-fold) after the removal of SDS than prior to the addition of SDS.  相似文献   

14.
Efficient protein solubilization using detergents is required for in‐depth proteome analysis, but successful LC‐MS/MS analysis greatly depends on proper detergents removal. A commonly used sample processing method is the filter‐aided sample preparation (FASP), which allows protein digestion and detergent removal on the same filtration device. Many optimizations of the FASP protocol have been published, but there is no information on the influence of the filtration unit typology on the detergents removal. The aim of this study was to compare the performance of conic and flat bottom filtration units in terms of number of proteins identified by LC‐MS/MS. We have analyzed 1, 10 and 100 μg of total cell lysate prepared using lysis buffer with different SDS concentrations. We compared the FASP protocol using conic and flat bottom filtration units to ethanol precipitation method. Subsequently, we applied our most performant protocol to single murine pancreatic islet, and identified up to 2463 protein using FASP versus 1169 proteins using ethanol precipitation. We conclude that FASP performance depends strongly on the filter shape: flat bottom devices are better suited for low‐protein samples, as they allow better SDS removal leading to the identification of greater number of proteins.  相似文献   

15.
The association of brain tubulin, as measured by the temperature-dependent development of turbidity at 350 nm, is greatly stimulated by the detergent Nonidet P-40 in crude extracts of rat brain tissue. Stimulation of turbidity development is also obtained with partially purified rat brain tubulin treated with Nonidet or other detergents, or preincubated with phospholipase C or D; treatment with bovine pancreatic phospholipase A2 produces an inhibition. Exogenous phospholipids, diglycerides, other related derivatives, and lipophilic extracts of tubulin and brain supernatants can also alter the turbidity development. In addition, microtubules arising from tubulin obtained in the presence of Tween-20 or Nonidet P-40 exhibit a 50 and 100% increased specific viscosity, respectively, over that of tubulin prepared in the absence of detergent or in the presence of Kyro or Triton N-101. The effectiveness of these detergents in removing phospholipids from tubulin preparations follows a similar pattern: Nonidet P-40 removes 80%, Tween-20 removes 50%, and Kyro or Triton N-101 removes none. The total mass of microtubule formed, as determined by sedimentation, is the same regardless of the effect of the detergents on the viscosity. The microtubules obtained in the presence of Nonidet P-40 have a normal appearance when examined by electron microscopy, and their composition on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is indistinguishable from that of standard tubulin, especially with regard to the minor protein bands always present in the tubulin preparations. The results obtained suggest that the phospholipids associated to brain tubulin preparations might have a role in determining the association of tubulin and/or the final dimensions of the assembled microtubules.  相似文献   

16.
We describe the use of commercially available microcentrifugation devices (spin filters) for cleanup and digestion of protein samples for mass spectrometry analyses. The protein sample is added to the upper chamber of a spin filter with a > or = 3000 molecular weight cutoff membrane and then washed prior to resuspension in ammonium bicarbonate. The protein is then reduced, alkylated, and digested with trypsin in the upper chamber and the peptides are recovered by centrifugation through the membrane. The method provides digestion efficiencies comparable to standard in-solution digests, avoids lengthy dialysis steps, and allows rapid cleanup of samples containing salts, some detergents, and acidic or basic buffers.  相似文献   

17.
The phospholipase activity of rat jejunal brush-border membranes was examined in the presence of several solubilizing agents, by measuring the hydrolysis of endogenous membrane phospholipids, as well as the hydrolysis of exogenous, radiolabelled substrates. Enzyme activity was highly stimulated by dispersion in 1% solutions of bile salts, or in a synthetic, bile-salt derivative, 3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate (CHAPS). Under these conditions the endogenous membrane phospholipids were largely degraded to free fatty acids and water-soluble phosphate. In the presence of 1% CHAPS, hydrolysis of exogenous phosphatidylcholine was shown to be due to an initial phospholipase A2-type attack followed by a subsequent lysophospholipase-type attack. These activities co-purified with the brush-border membrane. Maximal phospholipase A2 hydrolysis occurred at an alkaline pH of 8-11, with bile-salt detergents present at greater than their critical micellar concentrations. Hydrolysis was completely divalent-ion independent. Phospholipase A2 activity was not stimulated by 50% diethyl ether or ethanol, or in the presence of 1% solutions of Triton X-100, Zwittergent 3-12, sodium dodecyl sulphate, or n-octylglucoside. Stimulation of phospholipase activity by detergents was not related to their effectiveness at solubilizing the membrane proteins. When assayed individually phosphatidylcholine and lysophosphatidylcholine were each hydrolyzed (at the sn-2 and sn-1 positions, respectively) at a rate of approximately 125 nmol/mg protein per min. When assayed together, the two substrates appeared to compete for the same active site over a wide range of concentrations. It was concluded that the brush-border membrane contains an integral membrane protein with phospholipase A2 and lysophospholipase activities, which is specifically stimulated by bile salts and bile salt-like detergents.  相似文献   

18.
Spermatozoa of six species of Australian marsupials have been studied. The nucleus is highly unstable when compared with those of eutherian mammals. When thin films of spermatozoa in buffered saline are air-dried on glass slides, the nucleus disintegrates and flattens, leaving the acrosome, midpiece, and tail intact. This spreading of the nucleus can be inhibited by seminal plasma proteins and by bovine serum albumin, but is potentiated by detergents. The nucleus also decondenses spontaneously in the presence of high concentrations (>0.25M) of calcium and magnesium salts, leaving the head membranes, acrosome, midpiece, and tail intact. This is inhibited by EDTA. In some species, certain areas of the nucleus appear more resistant t o Ca++/Mg++ treatment, and the initial stages of decondensation are uneven. Ultrastructurally the Ca++/Mg++ dispersed chromatin shows a moderately fine, branching, fibrillar structure, interspersed with dense granules. Treatment with disulphide bond cleaving agents together with detergents results in rapid and complete dispersal of the chromatin and acrosome, and slow digestion of midpiece and tail structures. Treatment with HCl, NaCl, KCl, EDTA, detergents, and sucrose has no effect on nuclear integrity, but treatment with NaOH (0.9–1.0M) results in complete digestion of the whole sperm. These findings are discussed in the light of evolutionary differences between marsupial and eutherian mammals in terms of sperm structure and composition.  相似文献   

19.
Mitochondria isolated from potato (Solanum tuberosum L.) tuber were investigated for the presence of a nicotinamide nucleotide transhydrogenase activity. Submitochondrial particles derived from these mitochondria by sonication catalyzed a reduction of NAD+ or 3-acetylpyridine-NAD+ by NADPH, which showed a maximum of about 50 to 150 nanomoles/minute·milligram protein at pH 5 to 6. The Km values for 3-acetylpyridine-NAD+ and NADPH were about 24 and 55 micromolar, respectively. Intact mitochondria showed a negligible activity in the absence of detergents. However, in the presence of detergents the specific activity approached about 30% of that seen with submitochondrial particles. The potato mitochondria transhydrogenase activity was sensitive to trypsin and phenylarsine oxide, both agents that are known to inhibit the mammalian transhydrogenase. Antibodies raised against rat liver transhydrogenase crossreacted with two peptides in potato tuber mitochondrial membranes with a molecular mass of 100 to 115 kilodaltons. The observed transhydrogenase activities may be due to an unspecific activity of dehydrogenases and/or to a genuine transhydrogenase. The activity contributions by NADH dehydrogenases and transhydrogenase to the total transhydrogenase activity were investigated by determining their relative sensitivities to trypsin. It is concluded that, at high or neutral pH, the observed transhydrogenase activity in potato tuber submitochondrial particles is due to the presence of a genuine and specific high molecular weight transhydrogenase. At low pH an unspecific reaction of an NADH dehydrogenase with NADPH contributes to the total trans-hydrogenase activity.  相似文献   

20.
Microsomal b-type hemoprotein designated, cytochrome b555 of C.roseus seedlings was solubilized using detergents and purified by a combination of ion exchange chromatography and gel filtration to a specific content of 18.5 nmol per mg of protein. The purified cytochrome b555 was homogeneous and estimated to have an apparent molecular weight of 16500 on SDS-PAGE. The absorption spectrum of the reduced form has major peaks at 424, 525 and 555 nm. The alpha-band of the reduced form is asymmetric with a pronounced shoulder at 559 nm. The spectrum of the pyridine ferrohemochrome shows absorption peaks at 557, 524 and 418 nm indicating that the cytochrome has protoheme prosthetic group. The purified cytochrome is autoxidizable and does not combine with carbon monoxide, azide or cyanide. It is reducible by NADH in the presence of NADH-cytochrome b555 reductase partially purified from C.roseus microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号