首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several calcium-dependent protein kinases (CDPKs) are located in plant plasma membranes where they phosphorylate enzymes and transporters, like the H+-ATPase and water channels, thereby regulating their activities. In order to determine which kinases phosphorylate the H+-ATPase, a calcium-dependent kinase was purified from beetroot (Beta vulgaris L.) plasma membranes by anion-exchange chromatography, centrifugation in glycerol gradients and hydrophobic interaction chromatography. The kinetic parameters of this kinase were determined (V max: 3.5 μmol mg−1 min−1, K m for ATP: 67 μM, K m for syntide 2: 15 μM). The kinase showed an optimum pH of 6.8 and a marked dependence on low-micromolar Ca2+ concentrations (K d : 0.77 μM). During the purification procedure, a 63-kDa protein with an isoelectric point of 4.7 was enriched. However, this protein was shown not to be a kinase by mass spectrometry. Kinase activity gels showed that a 50-kDa protein could be responsible for most of the activity in purified kinase preparations. This protein was confirmed to be a CDPK by mass spectrometry, possibly the red beet ortholog of rice CDPK2 and Arabidopsis thaliana CPK9, both found associated with membranes. This kinase was able to phosphorylate purified H+-ATPase in a Ca2+-dependent manner.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

2.
Wang Y  Zhang M  Ke K  Lu YT 《Cell research》2005,15(8):604-612
By screening tobacco cDNA library with MCK1 as a probe, we isolated a cDNA clone NtCPK5 (accession number AY971376), which encodes a typical calcium-dependent protein kinase. Sequence analyses indicated that NtCPK5 is related to both CPKs and CRKs superfamilies and has all of the three conserved domains of CPKs. The biochemical activity of NtCPK5 was calcium-dependent. NtCPK5 had Vmax and Km of 526nmol/min/mg and 210μg/ml respectively with calf thymus histone (fraction Ⅲ, abbreviated to histone Ⅲs) as substrate. For substrate syntide-2, NtCPK5 showed a higher Vmax of 2008 nmol/min/mg and a lower Km of 30μM. The K0.5 of calcium activation was 0.04μM or 0.06μM for histone Ⅲs or syntide-2 respectively. The putative myristoylation and palmitoylation consensus sequence of NtCPK5 suggests that it could be a membrane-anchoring protein. Indeed, our transient expression experiments with wild type and mutant forms of NtCPK5/GFP fusion proteins showed that NtCPK5 was localized to the plasma membrane of onion epidermal cells and that the localization required the N-terminal acylation sites of NtCPK5/GFP. Taking together, our data have demonstrated the biochemical characteristics of a novel protein NtCPK5 and its subcellular localization as a membrane-anchoring protein.  相似文献   

3.
A calcium-dependent but calmodulin-independent protein kinase from soybean   总被引:1,自引:5,他引:1  
A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≈2 micromolar). The protein kinase activity was stimulated 100-fold by ≥10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45Ca2+ in the presence of KCl and MgCl2, which indicates that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity.  相似文献   

4.
A novel protein kinase which phosphorylates a synthetic peptide substrate (RRPDAHRTPNRAF) has been purified approximately 200,000-fold from bovine brain. This peptide contains the consensus sequence for phosphorylation by the p34cdc2 kinase. The purification procedure took advantage of the phenomenon that this novel brain kinase, in partially purified extracts, chromatographed on a gel filtration column as a high molecular weight complex which dissociated in buffer containing 1 M NaCl. The purified native enzyme was estimated to be approximately 63,000, and displayed two bands of M(r) = 33,000 and 25,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On Western immunoblot, the M(r) = 33,000 peptide reacted strongly with antibodies specific for a conserved amino-terminal sequence, weakly with antibodies to the conserved PSTAIRE sequence, and not at all with antibodies to the carboxyl terminus, of HeLa cell p34cdc2. The brain kinase and p34cdc2 were similar in displaying good activity toward the parent peptide substrate, but no activity toward peptide analogues in which the -T-P- motif was substituted with either -T-G- or -T-A-. Both kinases showed marked preference in phosphorylating a peptide derived from H1 histone (KTPKKAKKPKTPKKAKKL), and both kinases could be phosphorylated by the src-family tyrosine kinase, p56lyn, purified from bovine spleen. However, the brain kinase did not co-purify with a subunit having a molecular weight corresponding to known cyclins, nor did it undergo specific interaction with p13suc1 beads, suggesting that this enzyme is distinct from p34cdc2.  相似文献   

5.
Soluble extracts of rat liver contain a protein inhibitor of calcium-dependent proteases. The inhibitor has an apparent Mr = 250,000 and is separated from the calcium-dependent proteases by gel-filtration chromatography in the presence of EGTA. The inhibitor has been purified by affinity chromatography using a calcium-dependent protease covalently linked to Affi-Gel 15. The inhibitor specifically binds to this affinity resin in a calcium-dependent manner and elutes in the presence of EDTA or EGTA. The purified inhibitor appears as a single protein with Mr = 125,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Presumably it is a dimer under nondenaturing conditions. The inhibitor inhibits each of two calcium-dependent proteases from rat liver and from other tissues and species. However, it has no effect on any other protease tested.  相似文献   

6.
Purification and characterization of a protein kinase from pine pollen   总被引:1,自引:0,他引:1  
A kinase phosphorylating casein and phosvitin has been purified from pine pollen by a three-step procedure involving DEAE-cellulose chromatography, affinity chromatography on casein-Sepharose and Sephadex G-100. A purification of about 2000 fold was obtained by this procedure. The kinase is affected neither by cyclic nucleotides nor by Ca2+-calmodulin, whereas it is strongly inhibited by heparin. Using this purification procedure, we have isolated protein kinase exhibiting phosphorylating activity towards casein in the pollen of many other Pinaceae species.  相似文献   

7.
Toxoplasma gondii is an obligate intracellular parasite that infects all types of cells in humans. A family of calcium-dependent protein kinases (CDPKs), previously identified as important in the development of plants and protists, was recently shown to play a role in the infectivity of apicomplexans, and in motility and host cell invasion in particular. We report here the isolation of a new calcium-dependent protein kinase gene from the human toxoplasmosis parasite, Toxoplasma gondii. The gene consists of 12 exons. The encoded protein, TgCDPK4, consists of the four characteristic domains of members of the CDPK family and is most similar to PfCDPK2 from Plasmodium falciparum. We measured TgCDPK4 activity, induced by calcium influx, using a kinase assay. A calcium chelator (EGTA) inhibited this activity. These findings provide evidence of signal transduction involving members of the CDPK family in T. gondii.  相似文献   

8.
A wheat basic protein (WBP) was purified to homogeneity from wheat germ by a protocol involving extraction, centrifugation, batchwise elution from carboxymethylcellulose (CM-52), acidification with trifluoroacetic acid, neutralization and HPLC on a SP5PW cation exchange column. WBP is a 10 kDa protein and is phosphorylated on serine residues by wheat germ Ca(2+)-dependent protein kinase (CDPK). [32P]phosphoWBP exactly comigrates with WBP on SDS-PAGE. WBP does not inhibit either wheat germ CDPK or calmodulin-dependent myosin light chain kinase. Apart from histone H1, WBP is the best endogenous substrate yet found for wheat embryo CDPK. A 12 kDa pine basic protein (PBP) was purified to homogeneity from seeds of stone pine (Pinus pinea L.) by a simple procedure involving batchwise elution from carboxymethylcellulose and cation exchange HPLC. PBP is also a good substrate for CDPK and is phosphorylated on Ser residues. N-terminal sequencing of WBP and PBP revealed that these proteins are homologous to a family of small basic plant proteins having a phospholipid transfer function.  相似文献   

9.
We report the purification of a CaATPase of high specific activity from Paramecium tetraurelia. The enzyme is preferentially released into solution upon deciliation of cells by a Ca2+ shock procedure. Purification by ion exchange and gel filtration chromatography yields major peptides of 68 and 53 kDa and a minor peptide of 58 kDa, as determined by electrophoresis on sodium dodecyl sulfate polyacrylamide gels. These three peptides yield similar proteolytic peptide maps. Rabbit antisera to the purified enzyme inhibit enzyme activity and specifically label 68- and 53-kDa bands on nitrocellulose blots of the deciliation supernatant from which the enzyme is isolated. Concanavalin A-Sepharose precipitates about 60% of ATPase activity; only the 53-kDa band binds concanavalin A on nitrocellulose blots. The purified enzyme has a specific activity of 620 +/- 70 mumol/min/mg with ATP as substrate in the presence of Ca2+, which is required for enzyme activity. As substrates, ATP and GTP are strongly preferred to UTP and CTP. The Km for ATP in the presence of 3 mM Ca2+ is approximately 20 microM. Enzyme activity is strongly inhibited by the calmodulin antagonists trifluoperazine, fluphenazine, W7, and calmidazolium. However, calmodulin is not associated with the purified enzyme, based on the enzyme's inability to bind anti-calmodulin antibodies or to stimulate brain phosphodiesterase. The intracellular origin of this ATPase, its possible function, and its relationship to several other ATPases of Paramecium are discussed.  相似文献   

10.
G N DeMartino  D E Croall 《Biochemistry》1983,22(26):6287-6291
A calcium-dependent protease, previously identified in rat liver and designated peak II [DeMartino, G. N. (1981) Arch. Biochem. Biophys. 211, 253-257], was purified and characterized. The calcium-dependent proteolytic activity was accounted for by an 80 000-dalton protein. Depending on the method of purification, we found that this protease could be associated with a 28 000-dalton subunit, which was devoid of protease activity. The catalytic characteristics of the two different forms of the protease were indistinguishable. Each was half-maximally activated by approximately 250 microM calcium.  相似文献   

11.
Calmodulin-like domain protein kinases (CDPKs) represent a new class of calcium-dependent protein-phosphorylating enzymes that are not activated by calmodulin or phospholipid compounds. They have been found exclusively in plant and protozoal tissues. CDPKs are typified by four distinct domains: an N-terminal leader sequence, a protein kinase (PK) domain, a calmodulin-like domain (CLD), and a junction domain (JD) between the PK domain and CLD. Structural characterization of the CLD of CDPKalpha from soybean was undertaken based on the amino acid sequence homology of CLD to the structurally well-characterized calmodulin (CaM) family of structures. Tertiary models of apo-CLD, Ca(2+)-CLD complex, and intermolecularly bound Ca(2+)-CLD-JD complexes were obtained via automated and non-automated homology building methods. The resulting structures were compared and validated based on energy differences, phi-psi angle distribution, solvent accessibility, and hydrophobic potential. Circular dichroism, one-dimensional, and two-dimensional nuclear magnetic resonance spectroscopy studies of the CLD and peptides encompassing the JD provide experimental support to the models. The results suggest that there is a possible interaction between the CLD and JD domain similar to that of the CaM/calmodulin-dependent protein kinase II system. At low Ca(2+) levels, the JD may act as an autoinhibitory domain for kinase activity, and during calcium activation an intramolecular CLD-JD complex may form, relieving inhibition of the PK domain. Interactions between the JD and the C terminus of the CLD appear to be particularly important. The outcome of this study supports an intramolecular binding model for calcium activation of CDPK, although not exclusively.  相似文献   

12.
A polygalacturonase-inhibiting protein (PGIP) was detected in soybean (Glycine max (L.) Merr.) seedlings. The protein was purified from germinating seeds and appeared to consist of at least three components with very close molecular weights (between 37 and 40 kDa) but each showing a unique N-terminal sequence. Primers specific for N-terminal and C-terminal nucleotide sequences of field bean (Phaseolus vulgaris L.) PGIP were used in a polymerase chain reaction (PCR) on soybean DNA, and only one amplification band was obtained. The amplified product was cloned and one of the PCR clones was sequenced. The nucleotide sequence comprises 942 bp with a single open reading frame which encodes a polypeptide of 313 amino-acid residues with a predicted molecular weight of 33984 Daltons and an isoelectric point of 8.21. Analysis of genome organization showed a single gene copy of PGIP with few related sequences, and wounding of soybean hypocotyls showed a strong induction of expression of the PGIP gene. The PGIP showed different activities toward three purified fungal endo-polygalacturonases (endo-PGs) (two endoPGs from Sclerotinia sclerotiorum and one endo-PG from Aspergillus niger). A possible involvement of soybean PGIP in plant defence against fungal pathogens is discussed.  相似文献   

13.
Purification of a novel insulin-stimulated protein kinase from rat liver   总被引:3,自引:0,他引:3  
We previously described a novel insulin-stimulated protein kinase activity that phosphorylates Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) in cytosolic extracts of adipocytes (Yu, K-T., Khalaf, N., and Czech, M. P. (1987) J. Biol. Chem. 262, 16677-16685). In the present experiments, cytosolic extracts of livers from insulin-treated rats also exhibited a 30-100% increase in this Kemptide kinase activity and served as an abundant source for purification. The Kemptide kinase was purified in parallel from liver extracts of insulin-treated or control rats through five chromatographic steps and one polyethylene glycol precipitation. The chromatographic behavior of the insulin-stimulated Kemptide kinase differed significantly from the control kinase on Mono Q and heparin-Sepharose resins. The purified kinase preparations retain insulin stimulations of 2-10-fold. Analysis of the purified control and insulin-stimulated kinases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed single bands with similar silver staining intensity and apparent molecular masses of 52 kDa. The insulin-stimulated Kemptide phosphorylating activity also coincided with the major silver-stained band following isoelectric focusing in polyacrylamide gels. The stimulation of kinase activity in response to administration of insulin is due to an increase in Vmax, whereas the Km for Kemptide (0.3 mM) is unchanged. The apparent molecular mass of the native kinase determined by gel filtration is approximately 50 kDa, suggesting that it exists as a monomer. Either Mg2+ or Mn2+ serve as cofactors for the kinase which phosphorylates a variety of basic substrates including a number of peptides and histones. The activity of the Kemptide kinase is not changed by several compounds that have been shown to modulate other kinases. Based on these data, we conclude 1) a novel insulin-sensitive Kemptide kinase in liver cytosol has been purified to near homogeneity, and 2) insulin administration acutely modulates the specific activity of this Kemptide kinase in livers of intact rats.  相似文献   

14.
Protein tyrosine kinase was purified extensively from a 30,000 X g particulate fraction of bovine spleen by a procedure involving four column chromatographies: DEAE-Sepharose, polyamino acids affinity, hydroxylapatite, and Sephacryl S-200 molecular sieving. The purification resulted in more than 3,000-fold enrichment in [Val5]angiotensin II phosphorylation activity (specific activity 202 nmol/min/mg). All column chromatography profiles showed single protein tyrosine kinase activity peaks with the exception of that of affinity chromatography, where about 50% of the enzyme activity appeared with the breakthrough fraction; only the bound enzyme was further purified. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of a purified sample phosphorylated in the presence of [gamma-32P]ATP revealed the presence of a single phosphorylated polypeptide of molecular weight 50,000 which represents about 40% of total protein. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions showed that protein tyrosine kinase activity co-migrated with the phosphoprotein. Stoichiometry of the phosphorylation of the 50-kDa polypeptide was found to be 1.0 mol/mol. The purified sample did not appear to contain phosphotyrosine protein phosphatase activity. Both casein and histone could be phosphorylated by the purified sample, and the phosphorylation occurred only at tyrosine residue, suggesting that there was no protein serine and threonine kinase contamination.  相似文献   

15.
A protein kinase was isolated from spinach thylakoid membranes by solubilization with octyl glucoside and cholate. The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, and sucrose density centrifugation, followed by affinity chromatography on either Affi-Gel blue (yielding denatured enzyme) or on histone cross-linked to Sepharose (yielding active enzyme). Electrophoresis on denaturing polyacrylamide gels, followed by staining with silver, revealed the kinase as a single band corresponding to an apparent molecular mass of 64 kDa. The active enzyme underwent autophosphorylation and could be detected by autoradiography following incubation with [gamma-32P]ATP and Mg2+ ion. The specific phosphotransferase activity of purified kinase was approximately 30 nmol of phosphate min-1 (mg protein)-1 with lysine-rich histone (III-S or V-S) as substrate; casein was phosphorylated at approximately 30% of this rate. The physiological substrate for the kinase is presumed to be light-harvesting chlorophyll a/b protein complex. In solubilized form, this was phosphorylated at approximately 10% of the rate observed with histone III-S as substrate, or 10-100 times slower than the estimated rate of phosphorylation of the light-harvesting complex in situ. Possible reasons for this shortfall are considered. The kinase is proposed as the principal effector of thylakoid protein phosphorylation and associated State transition phenomena.  相似文献   

16.
17.
A rat liver cAMP-independent protein kinase that phosphorylates peptide b of ATP-citrate lyase (Ramakrishna, S., Pucci, D. L., and Benjamin, W. B. (1983) J. Biol. Chem. 258, 4950-4956) has been purified to apparent homogeneity. The molecular weight, determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, sucrose density gradient, and by gel filtration, was found to be 36,000. This protein kinase phosphorylates in vitro ATP-citrate lyase, acetyl-CoA carboxylase, and glycogen synthase and does not phosphorylate phosphorylase, phosphorylase kinase, histone, phosvitin, and casein. It has Fa (activity factor) activity stimulating the ATP X Mg-dependent phosphatase and is therefore named a multifunctional protein kinase. This kinase differs from glycogen synthase kinase-3 with regard to substrate specificity, kinetic parameters, and physicochemical properties.  相似文献   

18.
Li H  Roux SJ 《Plant physiology》1992,99(2):686-692
Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.  相似文献   

19.
20.
A novel CBL-interacting protein kinase (CIPK) gene, ZmCIPK16, was isolated from maize (Zea mays), which has been certified to have two copies in the genome. The ZmCIPK16 is strongly induced in maize seedlings by PEG, NaCl, ABA, dehydration, heat and drought, but not by cold. A yeast two-hybrid assay demonstrated that ZmCIPK16 interacted with ZmCBL3, ZmCBL4, ZmCBL5, and ZmCBL8. Bimolecular fluorescence complementation (BiFC) assays prove that ZmCIPK16 can interact with ZmCBL3, ZmCBL4, ZmCBL5, and ZmCBL8 in vivo. Subcellular localization showed that ZmCIPK16 is distributed in the nucleus, plasma membrane and cytoplasm; this is different from the specific localization of ZmCBL3, ZmCBL4, and ZmCBL5, which are found in the plasma membrane. The results also showed that overexpression of ZmCIPK16 in the Arabidopsis sos2 mutant induced the expression of the SOS1 gene and enhanced salt tolerance. These findings indicate that ZmCIPK16 may be involved in the CBL-CIPK signaling network in maize responses to salt stress. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Jinfeng Zhao and Zhenfei Sun are contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号