首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of angiotensin II (AII) and its 1-des Asp analog (AIII) given intra-arterially (0.3–30 ng/kg) were compared in the mesenteric, femoral, and renal vascular beds in anesthetized dogs in which flow was measured with an electromagnetic flowmeter. As has been shown previously, AII and AIII produced similar changes in renal blood flow. In view of the reduced pressor activity of AIII it was surprising to find strikingly similar responses to AII and AIII in the mesenteric and femoral vascular beds. We conclude that the difference in pressor activity of these agents is attributable to something other than differences in their peripheral vascular receptor, and perhaps may be due to differences in their central actions.  相似文献   

3.
Incubation in vitro of angiotensin I (A I) with crude kallikrein induced a potentiation in the response to decapeptide of the isolated continuously superfused rabbit aorta. Crude kallikrein when incubated with angiotensin II (A II) caused a decrease in response to octapeptide of the same assay tissue. Converting enzyme inhibitor, SQ 20881, produced a competitive inhibition in the response to A I preincubated with crude kallikrein but did not alter the inhibitory effect of the enzyme on A II response. Pure kallikrein did not induce any change in the responses to both peptides when used at the same concentrations. The competitive inhibitor of A II (N,N-dimethyl) Gly1-Ile5-Ile8-angiotensin II (DMGIA II), abolished the effects of both A II- and A I-preincubated with crude kallikrein. From these results it was concluded that crude kallikrein-induced potentiation in the response to A I of the aorta is probably due to the conversion of decapeptide to octapeptide by an enzyme fraction in crude kallikrein preparation. These results also indicate that crude kallikrein (Padutin) is not a pure enzyme preparation and probably contains some other enzyme fractions which are responsible from the changes of the vascular activities of angiotensin-peptides.  相似文献   

4.
5.
6.
The chronotropic responses to angiotensins I and II (5 micrograms in 1 mL Tyrode's solution) injected into the sinus node artery were assessed before and after the intravenous administration of captopril (2 mg/kg) and saralasin (20 micrograms/kg) in anaesthetized dogs. The effects of angiotensin II given intravenously were also observed. The animals (n = 8) were vagotomized and pretreated with propranolol (1 mg/kg, i.v.) to prevent baroreceptor-mediated responses to increases in blood pressure. Injection of angiotensin I into the sinus node artery induced significant increases in heart rate (114 +/- 6 vs. 133 +/- 6 beats/min) and in systemic systolic (134 +/- 13 vs. 157 +/- 14 mmHg; 1 mmHg = 133.3 Pa) and diastolic (95 +/- 10 vs. 126 +/- 13 mmHg) blood pressures. Similar results were obtained when angiotensin II was injected into the sinus node artery, but intravenous injection induced changes in systolic (138 +/- 8 vs. 180 +/- 25 mmHg) and diastolic (103 +/- 8 vs. 145 +/- 20 mmHg) blood pressures only. Captopril induced a significant decrease in systolic (118 +/- 11 vs. 88 +/- 12 mmHg) and diastolic (84 +/- 9 vs. 59 +/- 9 mmHg) blood pressures without affecting the heart rate (109 +/- 6 vs. 106 +/- 6 beats/min). Saralasin produced a significant increase in systolic (109 +/- 7 vs. 126 +/- 12 mmHg) blood pressure only. Increments in heart rate and systolic and diastolic blood pressures in response to angiotensins I and II were, respectively, abolished by captopril and saralasin. It was concluded that angiotensin II has, in vivo, a direct positive chronotropic effect that can be blocked by saralasin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
The action of three previously isolated electrophoretically homogeneous brain proteinases—cathepsin B (EC 3.4.22.1), cathepsin D (EC 3.4.23.5), and high-molecular-weight aspartic proteinase (Mr=90K; EC 3.4.23.−)—on human angiotensins I and II has been investigated. The products of enzymatic hydrolysis have been identified by thin-layer chromatography on Silufol plates using authentic standards and by N-terminal amino acid residue analysis using a dansyl chloride method. Cathepsin D and high-molecular-weight aspartic proteinase did not split angiotensin I or angiotensin II. Cathepsin B hydrolyzed angiotensin I via a dipeptidyl carboxypeptidase mechanism removing His-Leu to form angiotensin II, and it degraded angiotensin II as an endopeptidase at the Val3-Tyr4 bond. Cathepsin B did not split off His-Leu from Z-Phe-His-Leu. Brain cathepsin B may have a role in the generation and degradation of angiotensin II in physiological conditions. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

10.
Angiotensins I, II, and III were separated by reversed-phase high-performance liquid chromatography on an octadecylsilyl column. The peptides were isocratically eluted with 50 mm NaH2PO4-25% (vv) acetonitrile, pH 6.0. The retention times were 3.3, 6.0, and 9.6 min for angiotensin II, III, and I, respectively. 125I-Angiotensins II, III, and I eluted with retention times of 5.4, 16.8, and 19.9 min, respectively, under the same chromatographic conditions used for the unlabeled angiotensins. The effect of iodination of the tyrosine residue on the retention time was also demonstrated by chromatographic comparison of tyrosine and diiodotyrosine. Saralasin (Sar1, Ala8-angiotensin II), a partial agonist of angiotensin II, and des-Asp1, Ile8-angiotensin II, an inhibitor of angiotensin III, eluted with retention times of 2.5 and 3.9 min, respectively.  相似文献   

11.
To prevent in vitro generation of angiotensins, the renin inhibitor CGP 29287 (CGP) was added to blood sampling tubes. Plasma immunoreactive angiotensin (ir-ANG) I and II were simultaneously measured by radioimmunoassay after rapid and quantitative extraction from a single plasma sample on phenylsilylsilica (Bondelut PH). True plasma ANG-(1-8)octapeptide was determined after additional separation of the different angiotensins by high performance liquid chromatography. Ir-ANG II/CGP showed the known linear relationship with ANG-(1-8)octapeptide (r = 0.87, n = 23), but - in contrast to studies without addition of CGP - the y-axis intercept which presumably represents cross-reacting angiotensins other than ANG II was very small. Ir-ANG II/CGP concentrations fell below 1 fmol/ml after converting enzyme inhibition. The results suggest that CGP 29287 prevents in vitro generation of ANG I and ANG II as well as the ANG-metabolites. Ir-ANG I/CGP measured after Bondelut PH extraction of the plasma was strongly correlated with ir-ANG I obtained after blood ethanol extraction (r = 0.97, n = 23). Thus, it is now possible to measure reliably both ANG I and ANG II within the same plasma extract after a simple extraction procedure.  相似文献   

12.
Minced rat renal medulla was incubated for 30 min at 37 °C in the presence of angiotensin, I, II or III (100 ng/ml) to determine the existence of a direct stimulating effect on prostaglandin (PG) production. PGE2, PGF, 6-keto PGF and Thromboxane B2 (TXB2)_were determined by radioimmunoassay.For analysis of data variance, the results were separated according to whether the net output of PGE2 was above or below 1.5 ng PGE2 equivalent/mg tissue/30 min. Under low-output conditions, angiotensin I, II or III stimulated PGE2 production significantly (p<0.02) and tended to augment PGF production, while under high-output conditions no effect on PGE2 or PGF production was observed.Under either output condition, angiotensin I, II or III had no effect on 6-keto PGF and TXB2.  相似文献   

13.
Experiments were performed in 14 anesthetized dogs to (1) to determine if the reductions in hindlimb blood flow produced by [des-Asp1] angiotensin I were due to its local enzymatic (kininase II) conversion to angiotensin III and (2) to quantitate the extent of conversion of angiotensin I to angiotensin II and of [des-Asp1] angiotensin I to angiotensin III in the hindlimb circulation. Graded doses of these peptides were administered as bolus injections directly into the left external iliac artery while measuring flow in this artery electromagnetically. Dose-response relationships were determined before and during the inhibition of kininase II activity with captopril or antagonism of angiotensin receptor sites with [Ile7] angiotensin III. Captopril inhibited the vasoconstrictor responses to angiotensin I and [des-Asp1] angiotensin I, but did not affect the responses to angiotensins II or III, or norepinephrine. [Ile7] angiotensin III inhibited the vasoconstrictor responses to all four angiotensin peptides but did not alter the responses to norepinephrine. These findings indicate that the hindlimb vasoconstrictor responses to [des-Asp1] angiotensin I were due to the local formation of angiotensin III. The extent of conversion of [des-Asp1] angiotensin I to angiotensin III that occurred in one transit through the hindlimb arterial circulation was estimated to be 36.7%, which was not different from the estimated 36.4% conversion of angiotensin I to angiotensin II. We conclude that angiotensin I and [des-Asp1] angiotensin I are converted to their respective vasoactive forms (angiotensins II and III) to a similar extent in the hindlimb circulation via the action of kininase II.  相似文献   

14.
Renomedullary tissue from rabbit or rat was incubated with angiotensin I, II, III, arachidonic acid, bradykinin, indomethacin and meclofenamate to study their effect on PGE2 production.Arachidonic acid and bradykinin enhanced PGE2 production significantly. Indomethacin and meclofenamate inhibited PGE2 production by more than 70%. Angiotensin I, II and III did not influence PGE2 production. These results suggest that bradykinin and arachidonic acid stimulate PGE2 production by a direct cellular action whereas the angiotensins do not.  相似文献   

15.
Renomedullary tissue from rabbit or rat was incubated with angiotensin I, II, III, arachidonic acid, bradykinin, indomethacin and meclofenamate to study their effect on PGE2 production. Arachidonic acid and bradykinin enhanced PGE2 production significantly. Indomethacin and meclofenamate inhibited PGE2 production by more than 70%. Angiotensin I, II and III did not influence PGE2 production. These results suggest that bradykinin and arachidonic acid stimulate PGE2 production by a direct cellular action whereas the angiotensins do not.  相似文献   

16.
17.
18.
19.
The influence of A II and PGE2 on the rise of perfusion pressure induced by periarterial stimulation and NA were studied in the rabbit isolated perfused kidney. Periarterial stimulation produced an increase in perfusion pressure and the venous outflow superfusing the rabbit aortic strip caused the muscle to contract. Both effects were found to be frequency dependent. NA induced similar effect when given into the renal artery. A II and its N-terminal analogs produced equal potentiation to periarterial stimulation without altering the effect of exogenous NA when added to the perfusion medium. DMGIA II which is a competitive inhibitor of A II inhibited the potentiating affect of A II. PGE2 also inhibited the effect of A II without altering the effect of exogenous NA. Addition of aspirin to the perfusion medium caused a potentiation to periarteral stimulation but did not change the effect of NA. A II added to the perfusion fluid containing aspirin still caused potentiation. From these results it was concluded that: (i) A II-induced potentiation to periarterial stimulation is mediated via specific receptors and probably due to facilitation of the release of transmitter from sympathetic nerve ending. (ii) PGE2 inhibited the release of transmitter. The effect of A II and PGE2 seemed to be mediated by independent mechanisms.  相似文献   

20.
We examined the contributions of the Ca(2+) channels of the sarcolemma and of the sarcoplasmic reticulum to electromechanical restitution. Extrasystoles (F(1)) were interpolated 40-600 ms following a steady-state beat (F(0)) in perfused rat ventricles paced at 2 or 3 Hz. Plots of F(1)/F(0) versus the extrasystolic interval consisted of phase I, which occurred before relaxation of the steady-state beat, and phase II, which occurred later. Phase I exhibited a period of enhanced left ventricular pressure development that coincided with action potential prolongation. Phase I was eliminated by -BAY K 8644 (100 nM) and FPL 64176 (150 nM), augmented by 3 microM thapsigargin plus 200 nM ryanodine and unaffected by KN-93 and KB-R7943. Phase II was accelerated by the Ca(2+) channel agonists and by isoproterenol but was eliminated by thapsigargin plus ryanodine. The results suggest that phase I of electromechanical restitution is caused by a transient L-type Ca(2+) current facilitation, whereas phase II represents the recovery of the ability of the sarcoplasmic reticulum to release Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号