首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intermedin (IMD)/adrenomedullin-2 (AM2) is a novel peptide that was independently discovered by two groups. The 47-amino acid peptide is homologous to adrenomedullin (AM) and can activate both the AM and calcitonin gene-related peptide (CGRP) receptors. IMD should therefore have actions similar to those of AM and CGRP. Indeed, like AM and CGRP, intravenous administration of IMD decreased blood pressure in rats and mice. We demonstrate here that immunoreactive IMD is present in plasma as well as heart, lung, stomach, kidney, pituitary, and brain. Because IMD is present in brain and both AM and CGRP have potent central nervous system (CNS) effects, we examined the ability of IMD within brain to regulate blood pressure and ingestive behaviors. Administration of IMD into the lateral cerebroventricle of rats caused significant, long-lasting elevations in mean arterial pressure and heart rate. These elevations are similar to the effects of CGRP and significantly greater than the effects of AM. IMD-induced elevations in mean arterial pressure were inhibited by intravenous administration of phentolamine, indicating that IMD activates the sympathetic nervous system. Intracerebroventricular administration of IMD also inhibited food and water intake in sated and in food- and water-restricted animals. The effects on feeding are likely related to activation of the CGRP receptor and are independent of the effects on water intake, which are likely through the AM receptor. Our data indicate that IMD has potent actions within the CNS that may be a result of the combined activation of both AM and CGRP receptors.  相似文献   

2.
Cholecystokinin octapeptide (CCK-8), administered intracerebroventricularly (i.c.v.), will suppress feeding. The aim of the present study was to determine the pharmacological characteristics of this satiety inducing effect in rats. For this purpose, we employed a feeding bioassay model in 24 h fasted rats and examined the effects of CCK-8 and a variety of structurally related analogs on latency to feed after i.c.v. injection and on the amount of food and water consumed as measured after the initiation of feeding in sequential 20-min epochs for 1 h. CCK-8, given in doses of 0.1, 1 and 10 nmol, produced a dose-dependent increase in feeding latency and a reduction of food intake during the first 20 min after initiation of feeding. Food intake during the next 40 min and water consumption were not altered. Plasma levels of CCK-like immunoreactivity after an i.c.v. injection of a dose of CCK-8 which blocked feeding (10 nmol) rose insignificantly from 117 to 125 pg/ml. In contrast, at the minimally effective dose of CCK-8 after i.v. administration (10 nmol), which also produced an inhibition of feeding, the plasma level was 1430 pg/ml. This difference indicates that plasma levels of CCK after i.c.v. CCK-8 are not adequate to produce the observed feeding suppression and suggests that the effects of i.c.v. CCK-8 are not mediated by a peripheral redistribution. Systematic dose response studies revealed the following rank order of potencies: CCK-8 greater than or equal to G-17 II much greater than CCK-8 NS = G-17 I greater than or equal to CCK-4 = CCK 26-29 = 0. Only gastrin-17 II (sulfated) produced an effect comparably significant to CCK-8. I.c.v. proglumide at 2500 nmol failed to modify the effects of CCK-8 at 10 nmol after i.c.v. injection. These data demonstrate that the structural requirements for feeding suppressive activity in rat brain are the carboxyterminus with a sulfated tyrosine residue, located 6 to 7 residues from the carboxyterminus, as present in CCK-8 and gastrin-17 II.  相似文献   

3.
Abstract: This study was designed to determine the possible role of brain glucagon-like peptide-1 (GLP-1) receptors in feeding behavior. In situ hybridization showed colocalization of the mRNAs for GLP-1 receptors, glucokinase, and GLUT-2 in the third ventricle wall and adjacent arcuate nucleus, median eminence, and supraoptic nucleus. These brain areas are considered to contain glucose-sensitive neurons mediating feeding behavior. Because GLP-1 receptors, GLUT-2, and glucokinase are proteins involved in the multistep process of glucose sensing in pancreatic β cells, the colocalization of specific GLP-1 receptors and glucose sensing-related proteins in hypothalamic neurons supports a role of this peptide in the hypothalamic regulation of macronutrient and water intake. This hypothesis was confirmed by analyzing the effects of both systemic and central administration of GLP-1 receptor ligands. Acute or subchronic intraperitoneal administration of GLP-1 (7–36) amide did not modify food and water intake, although a dose-dependent loss of body weight gain was observed 24 h after acute administration of the higher dose of the peptide. By contrast, the intracerebroventricular (i.c.v.) administration of GLP-1 (7–36) amide produced a biphasic effect on food intake characterized by an increase in the amount of food intake after acute i.c.v. delivery of 100 ng of the peptide. There was a marked reduction of food ingestion with the 1,000 and 2,000 ng doses of the peptide, which also produced a significant decrease of water intake. These effects seemed to be specific because i.c.v. administration of GLP-1 (1–37), a peptide with lower biological activity than GLP-1 (7–36) amide, did not change feeding behavior in food-deprived animals. Exendin-4, when given by i.c.v. administration in a broad range of doses (0.2, 1, 5, 25, 100, and 500 ng), proved to be a potent agonist of GLP-1 (7–36) amide. It decreased, in a dose-dependent manner, both food and water intake, starting at the dose of 25 ng per injection. Pretreatment with an i.c.v. dose of a GLP-1 receptor antagonist [exendin (9–39); 2,500 ng] reversed the inhibitory effects of GLP-1 (7–36) amide (1,000 ng dose) and exendin-4 (25 ng dose) on food and water ingestion. These findings suggest that GLP-1 (7–36) amide may modulate both food and drink intake in the rat through a central mechanism.  相似文献   

4.
Neuromedin U (NMU) is a brain-gut peptide, which peripherally stimulates smooth muscle, increases of blood pressure, alters ion transport in the gut, controls local blood flow, and regulates adrenocortical function. Although intracerebroventricular (i.c.v.) administration of NMU is known to decrease food intake and body weight, little is known about its effect on other physiological functions. We examined the effects of i.c.v. administration of NMU on mean arterial pressure (MAP), heart rate (HR), and plasma norepinephrine in conscious rats. Neuromedin U (0.05 and 0.5 nmol) provoked an increase in MAP (93.8 +/- 0.5 to 123.5 +/- 1.7 and 94.7 +/- 0.8 to 132.7 +/- 3.0 mm Hg, respectively) and HR (334.9 +/- 6.0 to 494.1 +/- 6.9 and 346.3 +/- 3.3 to 475.1 +/- 8.9 beats/min, respectively). In contrast, plasma norepinephrine increased only with a high dose of neuromedin U. Intravenously administered NMU (0.5 nmol) elicited a small and short lasting increase in MAP, compared to that by i.c.v. NMU. These results indicate that central neuromedin U regulates sympathetic nervous system activity and affects cardiovascular function.  相似文献   

5.
The effect on blood pressure and heart rate of central administration of dynorphin A(1-13) and of beta-, gamma-, and alpha-endorphin related peptides was studied in urethane-anesthetized rats. Intracerebroventricular (i.c.v., 0.1-10 micrograms) administration of beta-endorphin resulted in a dose-dependent, naltrexone-reversible hypotension and bradycardia. N-terminally modified fragments of beta-endorphin did not reduce blood pressure and heart rate. On the other hand, a dose of 10 micrograms of beta-endorphin(1-27), which lacks the four C-terminal amino acid residues of beta-endorphin, induced a fall in blood pressure and had a biphasic effect on heart rate. These responses, however, were resistant to pretreatment with naltrexone. None of the fragments of beta-endorphin smaller than beta-endorphin(1-27) affected blood pressure when administered i.c.v. in a dose of 10 micrograms. A small transient bradycardia was observed after i.c.v. administration of 10 micrograms of beta-endorphin(1-26), alpha, and gamma-endorphin. The naltrexone-reversible bradycardic response of alpha- and gamma-endorphin was not present in des-tyrosine- and des-enkephalin-alpha- and gamma-endorphin and also not in alpha-endorphin(10-16) and gamma-endorphin(10-17). Upon i.c.v. administration (0.1-50 micrograms) a dose-dependent, naltrexone-reversible decrease in blood pressure and heart rate was induced by dynorphin A(1-13). The present data indicate a hypotensive influence of beta-endorphin, beta-endorphin(1-27), and dynorphin A(1-13), whereas other fragments of beta-endorphin had little or no effect on the cardiovascular parameters investigated.  相似文献   

6.
Derived from the same prohormone, obestatin has been reported to exert effects on food intake that oppose those of ghrelin. The obestatin receptor GPR39 is present in brain and pituitary gland. Since the gene encoding those two peptides is expressed also in those tissues, we examined further the possible actions of obestatin in vivo and in vitro. Intracerebroventricular administration of obestatin inhibited water drinking in ad libitum-fed and -watered rats, and in food-and water-deprived animals. The effects on water drinking preceded and were more pronounced than any effect on food intake, and did not appear to be the result of altered locomotor/behavioral activity. In addition, obestatin inhibited ANG II-induced water drinking in animals provided free access to water and food. Current-clamp recordings from cultured, subfornical organ neurons revealed significant effects of the peptide on membrane potential, suggesting this as a potential site of action. In pituitary cell cultures, log molar concentrations of obestatin ranging from 1.0 pM to 100 nM failed to alter basal growth hormone (GH) secretion. In addition, 100 nM obestatin failed to interfere with the stimulation of GH secretion by GH-releasing hormone or ghrelin and did not alter the inhibition by somatostatin in vitro. We conclude that obestatin does not act in pituitary gland to regulate GH secretion but may act in brain to alter thirst mechanisms. Importantly, in rats the effects of obestatin on food intake may be secondary to an action of the peptide to inhibit water drinking.  相似文献   

7.
While prolactin (PRL) has been reported to increase food intake by virgin female rats, its effects on food intake by male rats are relatively unexplored. The present studies examined the possibility that PRL has sex-specific effects on food intake by rats. In the first study, intact female and male rats were given subcutaneous injections of saline vehicle or ovine (o) PRL (1.0 mg/kg) twice daily at 08:00 and 20:00 h for 10 days. Food intake, body weight, and water intake were measured daily. Results indicate that oPRL administration increased food intake by an average of 4.5 g per day in female subjects, but did not significantly alter body weight or water intake. Male rats treated with oPRL did not significantly alter their food intake, even after an additional five days of treatment. In the second study, a wide range of oPRL doses (vehicle, 0.02, 0.2, 2.0, and 20.0 mg/kg/day) were tested in gonadectomized female and male rats. The results indicate that female rats responded to increasingly larger doses of oPRL with greater increases in food intake, with a maximum increase of approximately 6. 1 g per day at a dose of 20.0 mg/kg. In contrast, male rats maintained baseline levels of intake across all oPRL doses tested. These data suggest that PRL has sex-specific effects on food intake.  相似文献   

8.
Ghrelin, a circulating growth-hormone releasing peptide derived from stomach, stimulates food intake through neuropeptide Y (NPY) neurons of the arcuate nucleus in the hypothalamus (ARC). We examined the effect of ghrelin microinjected into the ARC and the influence of intracerebroventricular (i.c.v.) pretreatment with a GHRH or NPY receptor antagonist on ghrelin-induced food intake in free-feeding male rats. Ghrelin (0.1-1 microg) stimulated food intake in a dose-dependent manner, and this effect was reduced by 55-60% by the Y(5) NPY receptor antagonist (10 microg i.c.v.), but not by the GHRH receptor antagonist MZ-4-71 (10 microg i.c.v.). We also evaluated the effects of passive ghrelin immunoneutralization by the microinjection of anti-ghrelin immunoglobulins (IgGs) intracerebroventricularly or directly into the ARC on food intake in free-feeding and fasted male rats. i.c.v. administration of anti-ghrelin IgGs decreased cumulative food intake over 24 h, whereas microinfusion of anti-ghrelin IgGs into the ARC induced only a short-lived (2 and 6 h) effect. Collectively, these data would indicate that centrally derived ghrelin has a major role in the control of food intake in rats and, in this context, blood-born ghrelin would be effective only in relation to its ability to reach the ARC, which is devoid of blood-brain barrier.  相似文献   

9.
《Life sciences》1995,56(14):PL243-PL248
Central administration of the selective mu opioid agonist, dermorphin, produces a concurrent diuretic and antinatriuretic response in conscious rats. To determine whether central mu opioids differentially affect the renal excretion of water and sodium, we examined changes in renal function produced by intracerebroventricular (i.c.v.) administration of dermorphin during continuous intravenous (i.v.) infusion of a synthetic ADH analogue in conscious Sprague-Dawley rats. During ADH infusion the typical diuresis produced by i.c.v. dermorphin was abolished although the antinatriuresis remained intact. Alone, I.v. ADH produced a decrease in urine flow rate without significantly altering urinary sodium excretion. In other studies, the effects of i.c.v. dermorphin were examined on the renal responses produced by i.v. infusion of a V2-ADH receptor antagonist. In these studies the magnitude of the V2 antagonist-induced diuresis was not altered by i.c.v. dermorphin but the increase in urinary sodium excretion produced by this antagonist was converted to an antinatriuresis. Central dermorphin did not alter heart rate or mean arterial pressure in either study. These findings suggest that the effects of central dermorphin on renal sodium and water handling are mediated by separate mechanisms; the effects on water involving changes in circulating ADH levels and the effects on sodium independent of the action of this hormone.  相似文献   

10.
Pretreatment of rats with intrahypothalamic injections of pituitary adenylate cyclase activating peptide (PACAP) 10 min prior to the injection of neuropeptide Y (NPY) significantly reduced food and water intake during the 4-h measurement period. Intrahypothalamic injection of PACAP in schedula-fed rats also reduced food and water intake for 2 h. A smaller 1-h reduction of water intake was observed in water-deprived rats, suggesting that the anticonsummatory effects of PACAP were primarily against food intake. PACAP treatment did not alter hypothalamic concentration of NPY, nor were neurotransmitters, precursors, or metabolites altered substantially in corpus striatum or nucleus accumbens regions. These results demonstrate primary anorectic effects of intrahypothalamic injection of PACAP. The demonstration of these anorectic effects may suggest a role of cyclic AMP activation and inhibition in the control of satiety and hunger.  相似文献   

11.
Obestatin is a new peptide for which anorexigenic effects were recently reported in mice. We investigate whether peripheral injection of obestatin or co-injection with cholecystokinin (CCK) can modulate food intake, gastric motor function (intragastric pressure and emptying) and gastric vagal afferent activity in rodents. Obestatin (30, 100 and 300 microg/kg, i.p.) did not influence cumulative food intake for the 2h post-injection in rats or mice nor gastric emptying in rats. In rats, obestatin (300 microg/kg) did not modify CCK (1 microg/kg, i.p.)-induced significant decrease in food intake (36.6%) and gastric emptying (31.0%). Furthermore, while rats injected with CCK (0.3 microg/kg, i.v.) displayed gastric relaxation, no change in gastric intraluminal pressure was elicited by obestatin (300 microg/kg, i.v.) pre- or post-CCK administration. In in vitro rat gastric vagal afferent preparations, 20 units that had non-significant changes in basal activity after obestatin at 30 microg responded to CCK at 10 ng by a 182% increase. These data show that obestatin neither influences cumulative food intake, gastric motility or vagal afferent activity nor CCK-induced satiety signaling.  相似文献   

12.
Litorin (LIT), a bombesin-like nonapeptide, decreased food intake in rats in a dose-related manner after parenteral injection. LIT decreased deprivation-induced water intake only at a dose much higher than required to suppress feeding. LIT administration did not significantly alter the frequency of observed feeding-associated behaviors, nor did it result in subsequent aversion to an associated novel solution. Litorin shares with bombesin structural features and pharmacological actions that include the suppression of food intake in a manner that mimics natural satiation.  相似文献   

13.
In order to clarify the role of atrial natriuretic polypeptide (ANP) in the brain on regulation of blood pressure and urine output, we examined the effects of intracerebroventricular (i.c.v.) administration of synthetic alpha-human ANP (alpha-hANP) to both anesthetized and conscious rats. In anesthetized rats, i.c.v. injection of angiotension II (A II) caused increases of blood pressure, urine flow and sodium excretion in a dose dependent manner. alpha-HANP alone had no effect on these two parameters. The hypertensive effect of A II was apparently attenuated by concurrent injection of alpha-hANP, while, the diuretic response to A II was not changed by alpha-hANP. In conscious spontaneously hypertensive rats, i.c.v. injection of saralasin (an A II antagonist) produced a decrease in blood pressure. The i.c.v. pretreatment with alpha-hANP significantly potentiated the central depressor effect of saralasin. These findings suggest that brain ANP may be involved in controlling blood pressure in the central renin-angiotensin system.  相似文献   

14.
Atrial natriuretic peptide inhibits water and sodium intake in rabbits   总被引:2,自引:0,他引:2  
The effect of atrial natriuretic peptide (ANP) on water and sodium intake was investigated in wild rabbits, a species which does not drink water following i.c.v. or i.v. administration of angiotensin II but develops sodium appetite following i.c.v. infusion of angiotensin II. ANP was given during or after depletion of extracellular fluid volume: hemorrhage, fluid deprivation and administration of furosemide. Systemically administered ANP reduced the water, but not the sodium intake of wild rabbits. I.c.v. administration of ANP inhibited both water and sodium intake. The suppression of thirst following both i.v. and i.c.v. administration of ANP indicates that inhibition of the effect of angiotensin II is not the exclusive mechanism and the circumventricular organs are probably not the exclusive sites of action for ANP. The inhibition of sodium appetite in wild rabbits was consistent with earlier proposals that ANP acts through the inhibition of the effects of angiotensin II. Reduction of food intake coincident with administration of ANP was also noted, but dose-dependent decrease was not observed.  相似文献   

15.
Cardiovascular effects of newly discovered peptide intermedin/adrenomedullin 2   总被引:10,自引:0,他引:10  
Pan CS  Yang JH  Cai DY  Zhao J  Gerns H  Yang J  Chang JK  Tang CS  Qi YF 《Peptides》2005,26(9):1640-1646
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CGRP). The present study aimed to investigate the cardiovascular effects of IMDs (IMD1-47 and IMD8-47) in rats. Intravenous administration of 150 nmol IMDs continuously decreased mean arterial pressure and inhibited cardiac function. Administration with IMDs decreased left ventricular end-systolic pressure (LVESP) and maximal rate of left-ventricle pressure development (+/-LVdp/dt(max)), and elevated left ventricular end-diastolic pressure (LVEDP). Changes with IMD1-47 treatment were close to that with IMD8-47 (P>0.05). Perfusion of isolated rat hearts in vitro with IMD8-47 (10(-8) and 10(-7)mol/L) resulted in lower LVSP, by 40 and 56% (P<0.01); lower +LVdp/dt (max), by 33 and 47% (P<0.01); lower -LVdp/dt(max), by 25 and 39% (P<0.01); but higher coronary perfusion flow (CPF), by 25% (P<0.05) and 33% (P<0.01), respectively, than controls. However, both IMD8-47 and IMD1-47 (from 10(-13) to 10(-7)mol/L) relaxed preconstricted aortic rings in a dose-dependent manner. Intravenous administration of IMD1-47 and IMD8-47 (10(-7)mol/L) in vivo increased the cyclic adenosine monophosphate (cAMP) content by 68 and 150% (both P<0.01), respectively, in myocardia and 320 and 281% (both P<0.01), respectively, in aortas, compared with controls. Perfusion of isolated hearts with IMD1-47 and IMD8-47 (10(-7)mol/L) enhanced cAMP content by 24% (P<0.05) and 73% (P<0.01), respectively, compared with controls. IMDs inhibited 3H-Leucine incorporation in cardiomyocytes in a concentration-dependent manner. IMD1-47 and IMD8-47 (10(-7) and 10(-8)mol/L) decreased 3H-Leucine incorporation by 12-25% (P<0.01) and 14-18% (P<0.01), respectively. IMD mRNA was detected in cultured neonatal cardiomyocytes and isoproterenol-induced hypertrophic myocardia but not normal myocardia of adult rats. These results suggest that IMD might be a regulatory factor for cardiovascular function and myocardial hypertrophy as a cardiovascular active peptide.  相似文献   

16.
C Okuda  T Mizobe  M Miyazaki 《Life sciences》1987,40(13):1293-1299
Intracerebroventricular (i.c.v.) administration of thyrotropin-releasing hormone (TRH) in a range from 0.1 to 100 micrograms induced a dose-related increase in blood pressure in conscious rats, whereas TRH-free acid (TRH-OH) and histidyl-proline diketopiperazine (His-Pro-DKP), metabolites of TRH, did not. The blood pressure responses to intravenous (i.v.) injection of 5 mg/Kg TRH were similar to those induced by TRH (i.c.v.). Pretreatment with atropine (50 micrograms, i.c.v.) significantly reduced the pressor effect of TRH administered through either route. Hemicholinium-3 (50 micrograms, i.c.v.), an inhibitor of choline uptake, also prevented the increase in blood pressure induced by TRH (10 micrograms, i.c.v.). These results indicate that both centrally and peripherally administered TRH have pressor effects that are mediated by central cholinergic mechanisms, probably by activating cholinergic neurons.  相似文献   

17.
Polypeptide YY(3-36) (PYY(3-36)) is a gastrointestinal secreted molecule, agonist of neuropeptide Y (NPY) receptor subtypes Y2 and Y5, that has been recently involved as anorexigenic signal in the network controlling food intake. Notably, several factors primarily involved in food intake control and energy homeostasis (as leptin, orexins, ghrelin and NPY) have been linked also to the regulation of anterior pituitary hormone secretion and carry out pleiotropic effects upon the reproductive axis. However, whether similar actions are conducted by PYY(3-36) remains so far largely unexplored. Present studies were undertaken to analyze the potential effects of PYY(3-36) in the control of prolactin (PRL) secretion in the rat. To this end, responses to PYY(3-36) in terms of PRL secretion were monitored in vitro, after pituitary exposure to 10(-8) to 10(-6) M concentrations, and in vivo, after i.p. administration of different doses of PYY(3-36) (3, 10 and 30 microg/kg) to prepubertal male and female rats. In addition, the in vivo effects of PYY(3-36) were tested after central (i.c.v.) administration of 3 nmol of the peptide to prepubertal rats, and in hyperprolactinaemic aged females. PYY(3-36) stimulated, in a dose-dependent manner, in vitro PRL secretion by pituitaries from prepubertal male and female rats. In contrast, systemic administration of PYY(3-36) failed to modify serum PRL levels, whereas central infusion of PYY(3-36) significantly inhibited PRL secretion in prepubertal rats. Finally, PRL secretion was stimulated in aged hyperprolactinaemic female rats by systemic administration of PYY(3-36). In conclusion, the anorexigenic peptide PYY(3-36) may participate in the control of PRL secretion in the prepubertal rat, acting at pituitary (stimulatory effect) and extra-pituitary (likely inhibitory action at the hypothalamus) sites of the lactotrope axis. Moreover, net actions of PYY(3-36) on PRL secretion may depend on the age and prevailing PRL levels.  相似文献   

18.
CCK-resistance in Zucker obese versus lean rats   总被引:4,自引:0,他引:4  
Obese Zucker rats are less sensitive to the satiety effect of CCK than lean litter mates. The present studies further characterised this CCK resistance. Subcutaneous injection of the CCK agonist caerulein dose-dependently decreased food intake in Zucker obese and lean rats whereas the CCK-B agonist gastrin-17 did not. Caerulein at 4 μg/kg, which resulted in CCK plasma bioactivity slightly above postprandial levels, decreased food intake in lean rats but not in obese rats. The decrease in food intake was also more marked at higher caerulein doses (20–100 μg/kg) in lean versus obese rats. In lean animals the satiety effects of the “near physiological” 4 μg/kg caerulein dose was abolished after blockade of vagal afferents with capsaicin, whereas the effects of higher caerulein doses were not. CCK-stimulated amylase secretion from pancreatic acini and binding capacity of 125I- labelled CCK-8 were decreased in obese versus lean rats. The CCK-A antagonist loxiglumide at 20 mg/kg, a dose which abolished the action of all caerulein doses on food intake, failed to alter the food intake either in obese or in lean rats when given without an agonist. The results suggest that the satiety effects of “near physiological” doses of caerulein in lean rats are mediated by vagal afferents whereas pharmacological doses act via non-vagal mechanisms. The differences in CCK's satiety effect between lean and obese rats may be due to differences in CCK-receptor binding and action at peripheral vagal sites. However, the failure of the CCK-A antagonist to increase food intake questions whether any of the effects of exogenous CCK are of physiological relevance.  相似文献   

19.
Adult male rats have been demonstrated to increase food intake in response to administration of drugs that interfere with oxidation of fatty acids (e.g. methyl palmoxirate and mercaptoacetate [MA]), effects that are larger in animals maintained on a high-fat diet. In contrast, while administration of MA has been reported to stimulate food intake in pre-pubertal female rats, food intake is not stimulated by MA in adult female rats. Instead, administration of MA to adult females results in changes in reproductive behavior and physiology. The present experiments were designed to examine the effects of administration of MA on food intake in adult female rats. The results demonstrated that, as previously reported, food intake was stimulated by MA in adult male rats on low-fat and high-fat diets, but food intake was not stimulated by MA in gonadally-intact adult female rats on either low-fat or high-fat diet. Further, MA did not stimulate food intake in female rats ovariectomized as adults. However, when females were ovariectomized prior to the onset of puberty (postnatal day 25–28), food intake was stimulated by administration of MA in adulthood. Finally, cyclic injections of 17-β-estradiol benzoate given to females ovariectomized prior to the onset of puberty abolished the stimulatory effects of MA on food intake in adult females. Taken together, the data suggest that exposure to estrogens during the time of puberty in female rats can persistently alter adult ingestive responding to signals related to changes in energy utilization.  相似文献   

20.
Prostaglandin (PG) E2, a bioactive lipid produced in the brains of various mammals, decreases food intake after central administration. We examined which of four distinct subtypes of PGE2 receptors (EP1-EP4) mediated the anorexigenic action of PGE2 using highly selective ligands. PGE2 at a dose of 0.1-10 nmol/mouse decreased food intake after intracerebroventricular (i.c.v.) administration in a dose-dependent manner in fasted mice. A centrally administered EP4 agonist, ONO-AE1-329 at a dose of 1-10 nmol/mouse mimicked the anorexigenic action by PGE2. The anorexigenic action of PGE2 or EP4 agonist was ameliorated by EP4 antagonist ONO-AE3-208 at a dose of 10 nmol/mouse. Thus, activation of PGE2-EP4 signaling in the central nervous system suppresses food intake. The EP4 agonist at a dose of 10 nmol/mouse delayed gastric emptying and elevated blood glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号