首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low concentrations of acetaldehyde, similar to those that can occur in the brain of ethanol-treated animals, effectively inhibit the pyruvate dehydrogenase complex purified from ox brain or from ox kidney, although the precise mechanism of this inhibition remains to be defined.  相似文献   

2.
Component X, the recently recognised subunit of mammalian pyruvate dehydrogenase complex, was shown by immune blotting to be present in all of nine tissues dissected from rat. This finding indicated that component X was not an isoenzyme of the lipoate acetyltransferase (E2) associated with one or a limited number of tissues. Native pyruvate dehydrogenase complex was shown to bind IgG raised to isolated component X, indicating that there were at least some regions of the X subunit exposed at the periphery of the complex. Lipoyl groups of ox heart pyruvate dehydrogenase complex were specifically cross-linked by reaction with phenylene-o-bismaleimide in the presence of pyruvate and the subunits contributing to the products of cross-linking were identified by immune blotting. Species with very high Mr containing both E2 and component X, were formed in high yield, as well as apparent E2/E2 and E2/X dimers and trimers and an X/X dimer. These results showed that acetylated lipoyl groups of different E2 and X subunits were able to interact in all possible combinations. The types of cross-linked E2 products formed suggested that two thiols, reactible with phenylene-o-bismaleimide, were rapidly generated in the presence of pyruvate. The results were most easily explained by the presence of two acetylatable lipoyl groups on each E2 polypeptide.  相似文献   

3.
It is shown that the relative amount of the holoenzyme in the highly purified pyruvate dehydrogenase complex from the bovine brain is higher when the enzyme activity is assayed in the reaction of nonoxidative formation of acetaldehyde as compared to the pyruvate: NAD+ reductase reaction. The S0.5 values for thiamine pyrophosphate are as following: (TPP) (0.314 +/- 0.22) x 10(-7) M with reaction of nonoxidative formation of acetaldehyde, (0.188 +/- 0.08) x 10(-6) M and (1.65 +/- 1.16) x 10(-6) M in case of the pyruvate: NAD+ reductase reaction. TPP in the concentration of (0.5-6.0) x 10(-7) M completely protects the sites of nonoxidative formation of acetaldehyde from modification by the coenzyme analogs, 4'-oxythiamine pyrophosphate and tetrahydrothiamine pyrophosphate. However, the pyruvate: NAD+ reductase activity of the pyruvate dehydrogenase complex is inhibited in this case by 30-34%. The data obtained suggest that in contrast to the pyruvate: NAD+ reductase reaction the conversion of pyruvate to acetaldehyde occurs by the sites which tightly bound TPP.  相似文献   

4.
5.
Summary The kinetic properties of rabbit brain pyruvate kinase have been studied to determine its role in the regulation of glycolysis. One of the substrates of the enzyme, phosphoenolpyruvate, exhibits homotropic cooperativity (Hill coeff. of 1.45); thus, it is a moderate activator of the enzyme. The other substrate, ADP, shows normal Michaelis-Menton kinetics. Fructose-6-phosphate and glucose-6-phosphate activate the enzyme only slightly at the 1mm level and inhibit slightly at higher levels, and hence have no metabolic influence on the enzyme activity. Fructose-1, 6-diphosphate also has a slight activation up to 0.5 mm but no inhibition at higher level; therefore, it has no influence either. ATP, 2-phosphoglycerate, and phenylalanine are inhibitors of the enzyme. ATP, being the energy reservoir derived from glycolysis as well as a product of the reaction catalyzed by the enzyme, is a significant feedback inhibitor of the enzyme. These kinetic properties suggest a key role for pyruvate kinase in the regulation of glycolysis. Phenylalanine inhibition of the enzyme has been reported to be a possible mechanism of damage to the developing brain in phenylketonuria. The inhibition by phenylalanine at 10 mm in the assay mixture is reversed by alanine, cysteine, or serine at 0.2 mm level. Furthermore, the effect of these amino acids in reversing the phenylalanine inhibition are mutually enhancing. Consequently phenylalanine cannot have a significant inhibition on the activity of pyruvate kinase in brain.A preliminary report has been presented at the American Society of Biological Chemists Meeting at Atlanta, Georgia, June 1978.  相似文献   

6.
7.
Effect of insulin on the pyruvate dehydrogenase complex in the rat brain   总被引:1,自引:0,他引:1  
The level of PDHa and PDHt is substantially reduced in the rat brain 24 hours after alloxan administration. Effects are almost completely reversed by insulin administration. PDHa and PDHt from alloxan rat brains are remarkably activated when assayed on samples obtained by combining and preincubating at 30 degrees C for 30 min a homogenate from fresh unfrozen brains of alloxan rats, with a similarly treated preparation from fresh unfrozen brains of normal or insulin rats. On the contrary, no activation at all is obtained if the preincubation is carried out on homogenates from frozen and thawed brains. In alloxan rats, brain acetyl CoA level decreases remarkably whereas plasma free fatty acid concentration increases. Such changes disappear after insulin administration. The oxygen uptake, the respiratory control index and the ADP/O ratio in mitochondrial preparations obtained from brains of alloxan rats show no modifications at all.  相似文献   

8.
In human (h) pyruvate dehydrogenase complex (PDC) the pyruvate dehydrogenase (E1) is bound to the E1-binding domain of dihydrolipoamide acetyltransferase (E2). The C-terminal surface of the E1beta subunit was scanned for the negatively charged residues involved in binding with E2. betaD289 of hE1 interacts with K276 of hE2 in a manner similar to the corresponding interaction in Bacillus stearothermophilus PDC. In contrast to bacterial E1beta, the C-terminal residue of the hE1beta does not participate in the binding with positively charged residues of hE2. This latter finding shows species specificity in the interaction between hE1beta and hE2 in PDC.  相似文献   

9.
A factor able to stimulate pyruvate dehydrogenase when added to purified mitochondria was prepared from the supernatant of brain plasma membranes incubated with physiological concentrations of insulin (25 microU/ml). The factor completely reactivated pyruvate dehydrogenase previously inhibited with ATP and was active on pyruvate dehydrogenase from brain and liver mitochondria and from peripheral lymphocytes. The insulin-dependent stimulator of pyruvate dehydrogenase was heat and acid stable, was not absorbed on charcoal and displayed an isoelectric point of 5.5. The insulin mediator was purified by gel filtration, DEAE-cellulose and sulfonated polystyrene chromatography and, after dansylation, by high performance liquid chromatography. The purified mediator displayed a molecular weight of about 2800 and appeared as a peptide rich in glycine and serine and void of proline and sulfur containing aminoacids. It retained its stimulatory action on pyruvate dehydrogenase after dansylation and was completely inactivated by trypsin and chymotrypsin. Full reactivation of ATP-inhibited pyruvate dehydrogenase was attained when mitochondria were incubated with a mediator concentration of about 0.5 microM.  相似文献   

10.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

11.
Candida 107 (NCYC 911) accumulates up to 45% of the biomass as triglycerides under conditions of nitrogenous substrate limitation in the medium. In oilseeds and adipocytes, lipid accumulation is preceded and accompanied by increased activity of key enzymes such as pyruvate dehydrogenase. However, in Candida 107, the activity of this complex was greatly reduced during lipogenesis. The initial velocity patterns were in accordance with a Hexa Uni Ping Pong mechanism. The Km values for the various substrates were similar to those found for the yeast Saccharomyces cerevisiae, but much higher than those reported for the mammalian enzyme. Product inhibition studies indicated that the Ki for acetyl coenzyme A and NADH were higher than those reported for other yeasts. The values for Ki were similar to those found for the liver enzyme, whereas the enzyme complex from heart had much lower Ki values for products. It has been suggested that in the heart and kidney, pyruvate dehydrogenase is regulated by product inhibition whereas in the liver this does not appear to be the mechanism. Therefore, it is probable, that like the liver enzyme, pyruvate dehydrogenase from Candida 107 may not be regulated by product inhibition.  相似文献   

12.
The recently characterized Mr-50000 polypeptide associated with mammalian pyruvate dehydrogenase complex, referred to as component or protein X, was shown to incorporate N-ethylmaleimide only in the presence of pyruvate or NADH. Component X, modified with N-ethyl[2,3-14C]maleimide in the presence of pyruvate, was isolated and subjected to acid hydrolysis. The radioactive products were resolved on an amino acid analyser and these coeluted with products from similarly modified and hydrolysed lipoate acetyltransferase. Preincubation of pyruvate dehydrogenase complex with pyruvate or NADH and acetyl-CoA resulted in a time-dependent diminution of incorporation of radiolabelled N-ethylmaleimide into component X and lipoate acetyltransferase and, correspondingly, in the extent of inhibition of overall complex activity by N-ethylmaleimide.  相似文献   

13.
14.
During the review period, several structures of component enzymes and domains of enzymes of this multienzyme complex were determined. Three structures of the flavoprotein component, dihydrolipoamide dehydrogenase, became available. The structure of the core component, dihydrolipoyl acetyltransferase, can in principle be constructed from the known structures of its modules: the lipoyl, the peripheral subunit-binding and the catalytic domain. Dynamic aspects, such as the structure and function of the inter-domain linkers in dihydrolipoyl acetyltransferase and the conformational changes invlved in the mechanism of electron transfer in dihydrolipoamide dehydrogenase, remain to be clarified. Although several questions concerning the structure of the individual components of the complex have been solved, there is still much to learn about the assembly pathway. In mammalian complexes, the structure and function of protein X remains something of a riddle.  相似文献   

15.
The pyruvate dehydrogenase multienzyme complex (PDC) is a key regulatory point in cellular metabolism linking glycolysis to the citric acid cycle and lipogenesis. Reversible phosphorylation of the pyruvate dehydrogenase enzyme is a critical regulatory mechanism and an important point for monitoring metabolic activity. To directly determine the regulation of the PDC by phosphorylation, we developed a complete set of phospho-antibodies against the three known phosphorylation sites on the E1 alpha subunit of pyruvate dehydrogenase (PDHE1α). We demonstrate phospho-site specificity of each antibody in a variety of cultured cells and tissue extracts. In addition, we show sensitivity of these antibodies to PDH activity using the pyruvate dehydrogenase kinase-specific inhibitor dichloroacetate. We go on to use these antibodies to assess PDH phosphorylation in a patient suffering from Leigh’s syndrome. Finally, we observe changes in individual phosphorylation states following a small molecule screen, demonstrating that these reagents should be useful for monitoring phosphorylation of PDHE1α and, therefore, overall metabolism in the disease state as well as in response to a myriad of physiological and pharmacological stimuli.  相似文献   

16.
The pyruvate dehydrogenase complex was isolated, partially purified, and characterized from green pea (Pisum sativum L., cv Little Marvel) leaf mitochondria. The pH optimum for the overall reaction was 7.6. The divalent cation requirement was best satisfied by Mg2+. Reaction velocity was maximal at 40°C. Pyruvate was a better substrate than 2-oxo-butyrate; other 2-oxo-acids were not substrates. Michaelis constants for substrates were; pyruvate, 57 micromolar; NAD, 122 micromolar; Coenzyme-A, 5 micromolar; Mg2+, 0.36 millimolar; Mg-thiamine pyrophosphate, 80 nanomolar. The products, NADH and acetyl-Coenzyme-A, were linear competitive inhibitors with respect to NAD and Coenzyme A. Inhibition constants were 18 and 10 micromolar, respectively. Glyoxylate inhibited complex activity only in the absence of thiol reagents. Glyoxylate inhibition was competitive with respect to pyruvate with an inhibition constant of 51 micromolar. Among mitochondrial metabolites examined as potential effectors, only ADP with an inhibition constant of 0.57 millimolar could be of physiological significance.  相似文献   

17.
Pyruvic acid undergo decarboxylation catalyzed by a hydrophobic thiazolium salt and reacts with a hydrophobic analog of lipoic acid to form a hydrophobic acylthioester that reacts with aniline to form acetanilide in water, but only in the presence of a hydrophobically modified polyaziridine that acts to gather the reactants just as the enzyme complex does.  相似文献   

18.
N Papadakis  G G Hammes 《Biochemistry》1977,16(9):1890-1896
One sulfhydryl group per polypeptide chain of the pyruvate dehydrogenase component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli was selectively labeled with N-[P-(2-benzoxazoyl)phenyl]-maleimide (NBM), 4-dimethylamino-4-magnitude of-maleimidostilbene (NSM), and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) in 0.05 M potassium phosphate (pH 7). Modification of the sulfhydryl group did not alter the enzymatic activity or the binding of 8-anilino-1-naphthalenesulfonate (ANS) or thiochrome diphosphate to the enzyme. The fluorescence of the NBM or NSM coupled to the sulfhydryl group on the enzyme was quenched by binding to the enzyme of the substrate pyruvate the coenzyme thiamine diphosphate, the coenzyme analogue thiochrome diphosphate, the regulatory ligands acetyl-CoA, GTP, and phosphoenolpyruvate, and the acetyl-CoA analogue, ANS. Fluorescence energy transfer measurements were carried out for the enzyme-bound donor-acceptor pairs NBM-ANS, NBM-thiochrome diphosphate ANS-DDPM, and thiochrome diphosphate-DDM. The results indicate that the modified sulfhydryl group is more than 40 A from the active site and approximately 49 A from the acetyl-CoA regulatory site. Thus, a conformational change must accompany the binding of ligands to the regulatory and catalytic sites. Anisotropy depolarization measurements with ANS bound on the isolated pyruvate dehydrogenase in 0.05 M potassium phosphate (pH 7.0) suggest that under these conditions the enzyme is dimeric.  相似文献   

19.
It possesses sigmoid kinetics with PEP; FBP activation changes the relationship to a rectangular hyperbola. The enzyme is inhibited by malate, which competes with PEP; FBP relieves the inhibition slightly. ATP and bicarbonate ions are also inhibitory at high concentrations. ATP inhibition is mixed-competitive with PEP; bicarbonate inhibition is non-competitive. It is suggested that pyruvate kinase may regulate both lactate and acetate production by moderating the size of the cytosolic pyruvate pool.  相似文献   

20.
Autophosphorylation of the insulin receptor was studied using a glycoprotein fraction solubilized and purified partially from the rat hepatoma cell line, Fao. Incubation of this receptor preparation with [gamma-32P] ATP, Mn2+, and insulin yielded a single insulin-stimulated phosphoprotein of Mr = 95,000 which corresponds to the beta-subunit of the insulin receptor. At 22 degrees C, incorporation of 32P was half-maximal at 30 s and about 90% complete after 2 min. At steady state, about 200 pmol of 32P were incorporated per mg of protein; this value corresponded to about 2 molecules of phosphate per insulin binding site estimated from Scatchard plots. Insulin increased the Vmax for autophosphorylation of the insulin receptor kinase nearly 20-fold with no effect on the Km for ATP. Mn2+ stimulated autophosphorylation by decreasing the Km of the kinase for ATP, whereas Mg2+ had no effect. Dilution of the insulin receptor over a 10-fold concentration range did not decrease the rate of autophosphorylation suggesting that it may occur by an intramolecular mechanism. When the phosphorylated beta-subunit of the insulin receptor was digested with trypsin, at least 5 phosphopeptides could be separated by high performance liquid chromatography on a mu Bondapak C18 reverse-phase column. Insulin stimulated the phosphorylation of all sites. These phosphate acceptor sites varied in their rate and degree of phosphorylation. Phosphopeptides pp4 and pp5 were phosphorylated very rapidly and reached steady state within 20 s, whereas phosphorylation of pp1 and pp2 required several minutes to reach steady state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号