首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
E A Young  J Lewis  H Akil 《Peptides》1986,7(4):603-607
Although a number of investigators have shown that release of ACTH is accompanied by the release of Beta-endorphin (beta-End) and Beta-lipotropin (beta-LPH), the proportion of the latter two peptides released with stress or by CRF is unclear. To evaluate directly the release of beta-End versus beta-LPH from the anterior lobe, we used molecular sieving of plasma and subsequent radioimmunoassay to measure release of both beta-End and beta-LPH into plasma after thirty minutes of inescapable intermittent footshock. We found a substantial increase in circulating beta-End which appears to be of anterior lobe origin. The beta-End does not appear to represent peripheral conversion of beta-LPH to beta-End since the ratio of beta-LPH:beta-End released remained constant between five and thirty minutes of stress, and the rate of disappearance of beta-LPH is slower than the rate of disappearance of beta-End following the termination of stress. Further confirmation of these findings was obtained by examining the POMC derived peptides released by pituitary cell suspensions in the presence and absence of oCRF. While unstimulated release consisted of equal proportions of beta-End and beta-LPH, stimulation of the anterior lobe cell suspensions with oCRF resulted in the release of two-fold more beta-End than beta-LPH.  相似文献   

2.
T Okajima  R Heldt  G Hertting 《Life sciences》1986,38(12):1143-1149
AVP(10(-8)-10(-6)M) increased ACTH as well as PGE2 release from rat anterior pituitary quarters in vitro in a concentration dependent manner. IBMX (0.1 mM), a phosphodiesterase inhibitor, increased the ACTH response to AVP. The cAMP content in pituitary tissue was increased by AVP. Cyclooxygenase inhibition by indomethacin(1.4 X 10(-5) M) or diclofenac (1.8 X 10(-5)M) led to a potentiation of AVP-evoked ACTH secretion and to a decrease in AVP-stimulated cAMP formation. PGE2(10(-6)M) significantly increased pituitary cAMP content and indomethacin did not affect cAMP levels activated by PGE2. PGE2 attenuated the AVP-induced ACTH release. These results indicate that at least two functional compartments of AVP-activated cAMP responses are involved in the AVP-induced ACTH release. One compartment is directly activated by AVP and participates in the propagation of AVP-induced ACTH release. The second compartment is activated by PGE2. The contribution of the second compartment to the regulation of ACTH secretion is not well understood since PGE2 shows an inhibitory effect on AVP-induced ACTH secretion.  相似文献   

3.
Recent studies from our laboratory indicate a primary central site of action of Angiotensin II (AII) to release ACTH. The present studies were designed to test whether AII is able to release ACTH in vivo in a similar fashion in intact, cannulated, freely moving Long-Evans (LE) or in vasopressin (AVP)-deficient, Brattleboro (DI) female rats. The in vivo response to AII was compared with that elicited by synthetic CRF. AII injected i.v. (0.4 or 2 micrograms/100 g BW) induced a significant, dose-related increase in plasma ACTH values 5 and 15 min after injection, in both LE and DI rats. CRF given to LE and DI rats at 0.4 micrograms/100 g BW elicited a larger increase in ACTH plasma values than a similar dose of AII, 5 or 15 min after the injection. Moreover, ACTH levels after CRF in DI rats were significantly greater than those obtained in LE controls. In vitro studies using dispersed anterior pituitary cells indicate that the response of cells from either LE or DI rats to AII or AVP (both at 10(-9) and 10(-8)M) was similar. Cells from DI donors were hyperresponsive to CRF (2 X 10(-11) and 10(-10)M) in terms of ACTH release when compared with the response of cells from LE rats. The present results suggest that the presence of AVP is not essential to mediate the central response to AII and that AII may act centrally to stimulate CRF release from the hypothalamus in vivo, which would then enhance ACTH output. The results in the DI rat indicate that the increased response to CRF may be an important compensatory mechanism involved in the regulation of adrenocortical function in the DI rat.  相似文献   

4.
The acute-phase cytokine interleukin-1 (IL-1) is known to activate the hypothalamic pituitary adrenal axis, primarily via corticotropin releasing hormone (CRH). The aim of this study was to determine whether IL-1beta could directly stimulate ACTH secretion from perifused equine anterior pituitary cells, and whether CRH pre-incubation affected corticotroph responsiveness. Isolated equine anterior pituitary cells were pre-incubated with media containing 10 nM CRH or vehicle for 20 hours before being loaded onto columns and perifused with 0.02 nM CRH and 100 nM cortisol. Columns were given a 5-minute pulse of arginine vasopressin (AVP, 10 nM), perifused for 4 hours with 0 (control) or 1 nM IL-1beta, then given a further 5-minute pulse of AVP (10nM). ACTH was measured in 5 minute fractions. In the setting of CRH pre-incubation, cells perifused with IL-1beta for 4 hours showed increased basal ACTH secretion compared to control (114 +/- 6 pM vs. 86 +/- 4 pM [means +/- S.E.M.], p < 0.001) and a significantly greater ACTH response to the final AVP pulse (240 +/- 32% vs. 96 +/- 30%, p = 0.009, expressed as % of ACTH response to the initial AVP pulse). The potentiation of AVP-stimulated ACTH release by IL-1 was not observed in cells pre-incubated with vehicle alone. In conclusion, IL-1 increases ACTH release in equine corticotroph cells pre-incubated with CRH and potentiates responsivity to AVP.  相似文献   

5.
To determine the role of arginine vasopressin (AVP) in stress-induced release of anterior pituitary hormones, AVP antiserum or normal rabbit serum (NRS) was micro-injected into the 3rd ventricle of freely-moving, ovariectomized (OVX) female rats. A single 3 microliter injection was given, and 24 hours later, the injection was repeated 30 min prior to application of ether stress for 1 min. Although AVP antiserum had no effect on basal plasma ACTH concentrations, the elevation of plasma ACTH induced by ether stress was lowered significantly. Plasma LH tended to increase following ether stress but not significantly so; however, plasma LH following stress was significantly lower in the AVP antiserum-treated group than in the group pre-treated with NRS. Ether stress lowered plasma growth hormone (GH) levels and this lowering was slightly but significantly antagonized by AVP antiserum. Ether stress also elevated plasma prolactin (Prl) levels but these changes were not significantly modified by the antiserum. To evaluate any direct action of AVP on pituitary hormone secretion, the peptide was incubated with dispersed anterior pituitary cells for 2 hours. A dose-related release of ACTH occurred in doses ranging from 10 ng (10 p mole)-10 micrograms/tube, but there was no effect of AVP on release of LH. The release of other anterior pituitary hormones was also not affected except for a significant stimulation of TSH release at a high dose of AVP. The results indicate that AVP is involved in induction of ACTH and LH release during stress. The inhibitory action of the AVP antiserum on ACTH release may be mediated intrahypothalamically by blocking the stimulatory action of AVP on corticotropin-releasing factor (CRF) neurons and/or also in part by direct blockade of the stimulatory action of vasopressin on the pituitary. The effects of vasopressin on LH release are presumably brought about by blockade of a stimulatory action of AVP on the LHRH neuronal terminals.  相似文献   

6.
Glucocorticoid control of pituitary beta-endorphin (beta-END) release was investigated in vitro and in vivo. Cultured cells of both rat anterior (AL) and neurointermediate (NIL) lobe released beta-END-like immunoreactivity (beta-END-LI) in response to epinephrine (10(-7) M); however, only the response of AL cells was prevented by corticosterone (10(-8)-10(-6) M) or dexamethasone (10(-9)-10(-7) M). Gel chromatographic analysis (Sephadex G-50) revealed that the major forms of beta-END-LI released by AL cells corresponded to beta-END and beta-lipotropin (beta-LPH) in molecular size, whereas virtually all of the immunoreactivity released by NIL cells resembled beta-END. In vivo administration of dexamethasone attenuated the stress-induced release of beta-END-LI in a dose- and time-related fashion, having a more pronounced effect on plasma levels of beta-END-LI corresponding to beta-LPH in molecular size. Metyrapone (100 mg/kg), an inhibitor of glucocorticoid synthesis, evoked a rapid (20-40 min) four- to sixfold increase in total plasma beta-END-LI and 75% of this rise was due to immunoreactivity resembling beta-LPH in size. This response was diminished by coadministration of either dexamethasone (0.05-1.25 mg/kg) or corticosterone (0.05-1.25 mg/kg) and completely prevented by 4-hr pretreatment with dexamethasone (50 micrograms/kg). The briskness of the plasma beta-END-LI response to acute changes in glucocorticoid status suggests that a "rapid" feedback mechanism operates in the physiologic control of pituitary beta-END-LI secretion. Moreover, the ability of glucocorticoids to selectively inhibit AL release of beta-END-LI in vitro and their pronounced effect on plasma levels of beta-END-LI resembling beta-LPH, a marker of AL secretion, together indicate that glucocorticoids exert a selective influence over the secretion of AL corticotrophs in vivo. This demonstration of differential regulation of the AL versus IL secretion of beta-END-LI in vivo most likely reflects a phenomena having biologic importance related to the different physiologic actions of the several molecular forms of beta-END-LI secreted by the two tissues.  相似文献   

7.
This study was undertaken to define the roles of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in the regulation of adrenocorticotropin (ACTH) release and biosynthesis in cultured ovine anterior pituitary cells and to define the intracellular mechanisms responsible for their action. At 4 h, CRF and AVP increased both ACTH release and total ACTH content, with AVP clearly the more potent agonist (maximal ACTH release: AVP, 22.8-fold; CRF, 7.6-fold; maximal increment in total ACTH content: AVP, 1.9-fold; CRF, 1.1-fold; EC50 for ACTH release: AVP, 2.3 +/- 0.5 nM; CRF, 9.2 +/- 5.0 nM). The increase in total ACTH content was interpreted to reflect an augmentation of ACTH biosynthesis since it was abolished by 10 microM cycloheximide. Exposure of the anterior pituitary cells to increasing concentrations of forskolin or 8-bromo-cAMP elicited increases in ACTH release and total ACTH content that were similar to those caused by CRF. A 30-min incubation with phorbol 12-myristate 13-acetate (PMA) caused a dose-related translocation of protein kinase C from the cytosol to the cell membrane; after 4 h, the increases in ACTH release and total ACTH content in response to increasing concentrations of PMA were similar to those caused by AVP. Chronic (24 h) exposure to 150 nM PMA caused an almost total depletion of both cytosolic and membrane-bound protein kinase C activities. When protein kinase C-depleted cells were subsequently exposed to AVP, the increases in ACTH release and total ACTH content were markedly attenuated, but the responses to CRF were preserved. Finally, the combination of CRF and AVP, CRF and PMA, or AVP and 8-bromo-cAMP increased ACTH release and total ACTH content in a synergistic manner. We conclude that: 1) in ovine anterior pituitary cells, AVP is the predominant regulator of ACTH secretion and biosynthesis; 2) the action of AVP is predominantly mediated by activation of protein kinase C, whereas the action of CRF is likely to be mediated by activation of the cAMP-dependent protein kinase (protein kinase A); and 3) the ability of CRF and AVP to increase total ACTH content and secretion in a synergistic manner provides a demonstration in normal pituitary cells that protein kinases C and A may interact in a unidirectional manner to regulate ACTH biosynthesis in addition to ACTH release. This interaction may take place within, or between, individual corticotropes.  相似文献   

8.
AVP (10(-7) M) induced ACTH as well as PGE2 release from rat anterior pituitary quarters. Inhibitors of P-450 monooxygenase, metyrapone (10 mM) and piperonyl butoxide (1 mM and 10 mM) attenuated the ACTH and PGE2 response to AVP. 7,8-benzoflavon (10 mM) which inhibits 3-methylchloranthrene inducible form of P-450 isoenzymes showed no inhibition of AVP-induced ACTH secretion. The decrease in ACTH response to AVP was still observed following the inhibition of prostaglandin synthesis by indomethacin. These results suggest that cytochrome P-450 monoocygenase systems are involved in the process of AVP-induced ACTH secretion, 3-methylchloranthrene inducible form of P-450 isoenzymes do not seem to be involved in this process.  相似文献   

9.
The effect of synthetic rat atrial natriuretic factor (ANF, Arg 101-Tyr 126) was evaluated in an in-vitro model of rat hypothalamo-neurohypophysial complex (HNC) in organ culture in which part of hypothalamus containing a portion of undamaged magnocellular neurons is separated from posterior pituitary by a fluid tight barrier with an intact stalk connecting both structures. ANF, when added to the medium at the hypothalamus site at concentrations of 3 X 10(-5) M to 3 X 10(-7) M, did not change basal AVP release from the posterior pituitary. Similarly, a shorter form of ANF (Cys 105-Tyr 126), reported to be highly potent in inhibiting adenylate cyclase activity in various tissues, exerted no effect on AVP excretion from HNC in organ culture. The application of an hyperosomotic medium (osmolality 324 +/- 2 mOsm/kg H2O) to the hypothalamic side, together with ANF (3 X 10(-6) M), significantly lowered osmotically-stimulated AVP release. It is concluded that ANF has no effect on basal AVP release from HNC in culture and suppresses osmotically-stimulated AVP secretion in this in vitro model.  相似文献   

10.
B A Eipper  R E Mains 《Biochemistry》1975,14(17):3836-3844
Denaturing solvents have been used to determine the molecular weight of the adrenocorticotropic hormone (ACTH) activity in mouse pituitary, in an ACTH secreting mouse pituitary tumor cell line (AtT-20/D-16v), and in the tissue culture medium from the pituitary tumor cells. ACTH activity was quantitated by radioimmunoassay and by bioassay. It is possible to utilize guanidine hydrochloride or sodium dodecyl sulfate in characterizing the multiple forms of ACTH because treatment of porcine ACTH (the 39 amino acid polypeptide form of ACTH, alpha(1-39)), pituitary extracts, tumor cell extracts, and tumor cell tissue culture medium with these denaturants does not diminish the immunological ACTH activity. Based on gel filtration in the presence of guanidine hydrocholoride, extracts of the pituitary tumor cells and the mouse pituitary contain three distinct molecular weight classes of ACTH activity. The major form of ACTH has a molecular weight similar to alpha(1-39) (molecular weight 4000-5500), but there are significant amounts of two higher molecular weight forms of ACTH: molecular weight 6500-9000 and molecular weight 20,000-30,000. The 6500-9000 molecular weight form of ACTH is the major form of ACTH in the tissue culture medium; there is no peak of alpha(1-39) size ACTH in the medium. In the radioimmunoasay all three forms of ACTH generate competitive binding curves parallel to that of porcine alpha(1-39); in the bioassay (stimulation of steroidogenesis in a mouse adrenal tumor cell line) the dose response curve for each of the molecular forms of ACTH is parallel to that for porcine alpha(1-39).  相似文献   

11.
The dose and time treatment effects of arginine vasopressin (AVP) on basal and hCG-stimulated testosterone accumulation by purified mouse Leydig cells in primary culture were examined. Pretreatment for 24 h of Leydig cells with AVP caused a stimulation of the acute (3 h) basal testosterone accumulation. In these conditions, progesterone accumulation was also increased. The stimulatory effect of AVP (10(-11)-10(-5) M) on testosterone accumulation was dose-dependent and as little as 10(-11) M-AVP caused significant stimulation whilst maximal effect was achieved with 10(-7) M. Oxytocin (10(-6) M) also showed a stimulation of testosterone accumulation in basal conditions, but the other peptides tested at the same concentration (neurotensin, somatostatin and substance P) did not have any effect. When Leydig cells were exposed to AVP for a longer period (48 or 72 h), the increase in basal testosterone accumulation disappeared. AVP treatment of Leydig cells for 72 h led to a significant and dose-dependent reduction in the hCG-responsiveness without altering the slope of the hCG dose-response curve. This inhibitory effect, which was also observed when AVP-pretreated Leydig cells were acutely challenged for 3 h with 8-bromo-cAMP, was accompanied by a concomitant increase in progesterone accumulation. These results indicate that AVP can exert a dual effect on mouse Leydig cells: stimulatory on basal testosterone accumulation during short-term exposure (24 h) and inhibitory on the response to hCG stimulation after long-term treatment (72 h). They provide additional evidence that neurohypophysial peptides directly affect Leydig cell steroidogenesis.  相似文献   

12.
Arginine vasopressin (AVP) is a potent secretagogue for adrenocorticotropin (ACTH) release from normal corticotropes and from ACTH-secreting pituitary adenoma cells. To explore the mechanism underlying this action, we investigated the effects of AVP on Ca2+-dependent action potentials and Ca2+ currents in cultured human ACTH-containing pituitary tumor cells (hACTH adenoma cells). Pituitary adenoma fragments removed at surgery from two patients with Cushing's disease were dispersed, and the isolated cells were grown in monolayer culture. Most of the cells showed ACTH immunoreactivity that persisted even after as much as 2 months in culture. Current clamp and voltage clamp recordings were carried out using the patch-clamp technique in the whole cell configuration. AVP produced an increase in the amplitude and duration of action potentials in these cells, and substantially enhanced the transient after-hyperpolarization after each spike. Under voltage the transient after-hyperpolarization after each spike. Under voltage clamp, hACTH adenoma cells showed two Ca2+ current components: a low-threshold, rapidly inactivating (T-type) current; and a higher threshold, slowly inactivating (L-type) current. AVP markedly increased the amplitude of the L-type current without affecting the T-type current. These data suggest that AVP may enhance Ca2+ entry associated with action potentials by potentiating the activity of L-type Ca2+ channels. The resulting rise in cytosolic free Ca2+ may be a key link in the process by which AVP stimulates ACTH release in the pituitary.  相似文献   

13.
Immunoreactive ACTH and beta-endorphin (beta-End) were localized in the brain and pituitaries of normal and colchicine-treated rats, using the immunoperoxidase method at the light microscopic level. On adjacent serial 5-micron paraffin sections of anterior pituitaries, both ACTH and beta-End could be found in the same cells. On adjacent 5-micron paraffin sections of brains of colchicine-treated rats, both ACTH and beta-End could be found in the same perikarya of hypothalamic arcuate nucleus neurons. It appeared that all perikarya containing beta-End contained ACTH as well, suggesting that neurons producing beta-End also produce ACTH. Pathways of ACTH fibers corresponded to pathways of beta-End fibers. These findings suggest that the synthesis, and transport, of ACTH and beta-End are linked in the brain as well as in the pituitary, possibly through a common precursor.  相似文献   

14.
Beta-endorphin (beta-End) and adrenocorticotrophic hormone (ACTH) were determined in the peripheral blood of 14 human volunteers exercising on a bicycle ergometer. After 1 h of submaximal work below anaerobic threshold (AT), defined as the 4 mmol X l-1 lactic acid level in arteriolar blood (Kindermann 1979; Mader 1980), beta-End and ACTH levels did not change from control conditions. Eleven of the same 14 subjects performed an uninterrupted graded exercise test on the same bicycle ergometer until exhaustion. This time beta-End and ACTH levels increased concomitantly with exercise of high intensity: at each moment, during and after this maximal test, a highly significant correlation (P less than 0.0001) was noted between the levels of beta-End and ACTH. The peak values of these hormones were reached within 10 min after stopping maximal exercise, and coincided with lactic acid peak levels. A rise in lactic acid levels above the anaerobic threshold always preceded the exercise-induced rise in beta-End and ACTH. Within the population tested, two subgroups could be distinguished: one comprising individuals whose hormonal response nearly coincided with the rise in lactic acid (rapid responders) and a second group composed of subjects whose normal response appeared delayed with respect to the lactic acid rise (slow responders). These results support the view that beta-End and ACTH are secreted in equimolar quantities into the blood circulation in response to exercise, and suggest that metabolic changes of anaerobiosis play a key role in the regulation of stress-hormone release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A number of investigations utilizing hypothalami from adrenalectomized animals have provided conflicting results regarding the role of serotonin (5HT) and norepinephrine (NE) in CRF regulation. In order to further investigate these neurotransmitters, we performed three sets of experiments with hypothalami obtained from intact rats. In experiment I, freshly obtained rat hypothalami were randomly grouped and incubated in control medium and medium in the presence of 10(-11) M, 10(-10) M, and 10(-9) M serotonin. Aliquots of 200 microliters of these incubates were bioassayed for CRF activity using a dispersed anterior pituitary cell system, and ACTH secretion from the cells was determined by radioimmunoassay. A preliminary experiment had determined that a 200 microliters aliquot from hypothalami incubated in control medium resulted in a significantly (p less than 0.0001) greater ACTH release than obtained from cells alone. No significant effect of serotonin on hypothalamic CRF release was obtained. In experiment III, individual hypothalami were bisected longitudinally, and one half served as control. The contralateral half was incubated in medium containing 10(-11) M, 10(-10) M, and 10(-9) M serotonin. CRF release in this experiment again revealed no significant effect of serotonin. In experiment II, hypothalami were again randomly grouped and incubated with control medium and in the presence of 10(-8) M and 10(-6) M norepinephrine. This experiment resulted in no significant effect of norepinephrine on CRF release. These results suggest that serotonin and norepinephrine at the concentrations studied have no effect on CRF release from hypothalami obtained from intact rats.  相似文献   

16.
The effects of a physiological dose of IGF I (40 ng/ml approximately 5 x 10(-9) M) on steroidogenesis were studied in bovine adrenal fasciculata cells cultured in serum-free McCoy's medium. They were compared with those of a single dose of ACTH (0.25 ng/ml approximately 10(-10) M) at approximately the concentration inducing half-maximal stimulation. With IGF I, steroidogenesis commenced after 48 h culture and progressively increased throughout the 96-h test period. Expressed as stimulated level/control level ratios, glucocorticoid (cortisol + corticosterone) responses to IGF I after 4 days' culture (2.41 +/- 0.20 (SEM) n = 9) were similar to those obtained with ACTH (2.59 +/- 0.18, n = 9). A combination of the two peptides had a synergistic effect (5.95 +/- 0.79, n = 5). The cortisol/corticosterone ratio increased in the presence of IGF I from 1 +/- 0.19 to 1.76 +/- 0.45 (n = 7, P less than 0.02), although less so than in the presence of ACTH (5.50 +/- 0.98). Moreover, cortisol production was accompanied by androstenedione production (2.36 ng/10(6) cells, n = 3) similar to that induced by ACTH (2.10 ng/10(6) cells, n = 3). These findings together suggest stimulation of 17 alpha-hydroxylase activity. Cell multiplication was unaffected by IGF I. [3H]Thymidine incorporation into DNA reached only 193% +/- 17 (SEM) (n = 4) of control levels, whereas with ACTH it dropped to 60% +/- 5. Our findings show that IGF I alone has no mitogenic effect on adrenocortical cells in vitro, but that it is capable of inducing differentiated steroidogenesis.  相似文献   

17.
Nemoto T  Sugihara H  Mano A  Kano T  Shibasaki T 《Peptides》2011,32(6):1281-1288
Ghrelin, the endogenous ligand for growth hormone secretagogues (GHSs) receptor (GHS-R), increases adrenocorticotropin (ACTH) and cortisol (corticosterone) as well as GH secretion in humans and animals. However, the site of GHSs action to induce ACTH secretion is not fully understood. To clarify the mechanisms of the action of ghrelin/GHSs on ACTH secretion, we analyzed the effects of KP-102 and ghrelin on the mRNA expression and release of corticotropin releasing factor (CRF) and arginine vasopressin (AVP), ACTH secretagogues, in monolayer-cultured hypothalamic cells of rats. Incubation of cells with KP-102 for 4 h and 8 h and with ghrelin for 4 h significantly increased AVP mRNA expression and release without changing CRF mRNA expression. CRF levels in culture media were undetectable. Suppression of GHS-R expression by siRNA blocked ghrelin- and KP-102-induced AVP mRNA expression and release. NPY significantly increased AVP mRNA expression and release. Furthermore, treatment of cells with anti-NPY IgG blocked KP-102-induced AVP mRNA expression and release. We previously reported that KP-102 significantly increases NPY mRNA expression in cultured hypothalamic cells. Taken together, these results suggest that ACTH secretion by ghrelin/GHSs is induced mainly through hypothalamic AVP, and that NPY mediates the action of ghrelin/GHSs.  相似文献   

18.
Arginine vasopressin (AVP) potentiates corticotrope responses to CRH by increasing the percentage of target cells that secrete in a reverse hemolytic plaque assay for ACTH. The present studies were designed to test more specific effects of AVP and its second messengers on CRH binding to individual corticotropes. Spectrophotometric analyses of 560 corticotropes from fractions enriched to 90% by counterflow centrifugation showed a 30% increase in the average area of the dark blue label for biotinylated CRH after a 1-h exposure to 10 nM AVP or after activation of protein kinase-C [by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or L calcium channels (by Bay K 8644). In addition, computer analysis of the color of the label (wavelength 476-483) showed a 13% increase in saturation (intensity of the blue) and a 23% decrease in brightness (amount of white) after stimulation. The gray level readings of the blue color were also 18% lower after stimulation, which indicates an increase in density (less light transmitted). Taken together, the increases in label area and intensity indicated that activation of L calcium channels or protein kinase-C enhanced CRH binding by individual corticotropes. When mixed pituitary cell populations were analyzed for percentages of labeled cells, exposure to Bay K 8644, TPA, angiotensin II, or AVP resulted in 30-40% increases in the percentage of CRH-bound cells. Dual reactions for biotinylated CRH and ACTH showed that most of the added CRH-bound cells stored ACTH. The effect of exposure to two of the activators was not additive, however. If L calcium channels were blocked with nimodipine, the protein kinase-C-mediated enhancement in CRH binding and ACTH release was blocked, indicating that these actions are dependent on extracellular calcium. In contrast, nimodipine did not block the TPA-mediated enhancement of ACTH storage. These studies show that the potentiation of CRH-mediated ACTH release by AVP or angiotensin II may occur by the enhancement of CRH binding to individual corticotropes. This appears to promote the cytochemical detection of additional CRH-bound corticotropes which may stem from a reserve cell population that normally has levels of CRH receptors or ACTH stores below thresholds needed for detection. The source of these cells (from stem cells or multipotential cells) remains to be determined.  相似文献   

19.
Monensin inhibition of corticotropin releasing factor mediated ACTH release   总被引:1,自引:0,他引:1  
D O Sobel  K M Shakir 《Peptides》1988,9(5):1037-1042
Monensin is a sodium selective carboxylic ionophore that has been helpful in studying the intracellular mechanisms of protein secretion by its ability to inhibit transport of secretory proteins, particularly through the Golgi apparatus, and by its capacity to block intracellular posttranslational processing events. We studied in rat anterior pituitary cell culture the effects of monensin on: CRF stimulated ACTH release; presynthesized (stored) ACTH release; and on forskolin- (activator of adenylate cyclase) and KCl- (a membrane depolarizer which does not stimulate ACTH synthesis) induced ACTH release. Monensin inhibited CRF stimulated ACTH release in a dose-dependent fashion. The ED50 was 2.7 x 10(-8) M and maximal inhibition was 52% at 1.5 x 10(-7) M. Inhibition at 40 minutes of CRF incubation was similar to the percent inhibition noted at 1 hr 40 min and 2 hr 40 min. Monensin (1.5 x 10(-6) M) decreased the amount of ACTH release from cells incubated with cycloheximide plus CRF by 32% (p less than 0.01). Monensin individually inhibited forskolin (2 x 10(-6) M) and dibutyryl cyclic AMP (3 x 10(-3) M) mediated ACTH release in a dose-dependent fashion. The inhibition of forskolin and dibutyryl cyclic AMP mediated ACTH release by 1.5 x 10(-6) M monensin was 48% and 46% respectively. Monensin (1.5 x 10(-6) M) also reduced KCl (50 mM) stimulated ACTH release by 48%. This study demonstrates that monensin inhibits CRF mediated ACTH release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
D M Gibbs  W Vale  J Rivier  S S Yen 《Life sciences》1984,34(23):2245-2249
The effects of CRF(41), oxytocin (OT), and arginine vasopressin (AVP) on ACTH secretion were studied alone and in combination in an in vitro system of superfused rat hemipituitaries. CRF(41) (10(-9)M) and AVP (10(-8)M) alone produced a significant increase in ACTH secretion while OT (10(-8)M) alone had no effect. However the same concentration of OT markedly potentiated the ACTH response to CRF(41) while having no effect on the ACTH response to AVP. The data support a physiologic role for OT in the regulation of ACTH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号