共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Characterization of cellular receptors for erythroid differentiation factor on murine erythroleukemia cells 总被引:4,自引:0,他引:4
M Hino A Tojo K Miyazono Y Miura S Chiba Y Eto H Shibai F Takaku 《The Journal of biological chemistry》1989,264(17):10309-10314
Erythroid differentiation factor (EDF), which is structurally related to transforming growth factor-beta family and induces differentiation of murine erythroleukemia cell clone F5-5, has been labeled with 125I to characterize its interaction with cellular receptors. Binding of 125I-EDF to F5-5 cells is time- and temperature-dependent, specific, saturable, and reversible. Transforming growth factor-beta 1 has no significant effects on growth of F5-5 cells and binding of 125I-EDF to F5-5 cells. Scatchard analysis of the binding data indicated that F5-5 cells have a single class of binding sites (3,200/cell) with an apparent Kd of 3.1 X 10(-10) M. Affinity cross-linking experiments demonstrated three radiolabeled components of 140,000, 76,000, and 67,000 daltons under both reducing and nonreducing conditions. Labeling of these three components has been inhibited by incubation of the cells with excess unlabeled EDF. These results imply molecular weights of 115,000, 51,000, and 42,000 for the EDF receptors on this cell line. 相似文献
3.
During differentiation of murine erythroleukemia cells, the levels of certain mRNA were observed to change. To characterize the various patterns of changes that occur during differentiation, cDNA libraries made from RNA isolated from uninduced and differentiating cells were screened with labeled cDNA or RNA labeled in vivo for different periods of time. cDNA clones that corresponded to individual mRNAs whose level remained constant, increased, or decreased during differentiation were identified. These clones were used to analyze Northern blots containing RNA from uninduced and differentiated cells. A number of characteristic changes in individual mRNAs in differentiating murine erythroleukemia cells could be identified, such as no change, increase in concentration, increase in concentration and slight change in size, decrease in concentration, decrease in concentration and change in size, appearance of new band(s) of entirely different size, and change in relative concentrations of two related mRNAs. Measurements of rates of mRNA synthesis and degradation suggest that both parameters change during differentiation and that these changes are instrumental in establishing cellular concentration of specific mRNAs. It seems that the changes in mRNA stability observed in differentiating murine erythroleukemia cells may be associated with changes in the primary structure of the transcribed portion of mRNA. The observation that specific mRNA synthesized before and after induction may have very different stabilities at the same point in differentiation supports this hypothesis. 相似文献
4.
The relationship between differentiation of murine erythroleukemia cells (MEL) induced by DMSO and the cell division cycle has been analyzed. We demonstrate that incubation in the presence of DMSO increases the length of the G1 phase of the cell cycle. A method of synchronization of MEL cells by unit gravity sedimentation has been developed and characterized. Using this method, a series of synchronized cell populations covering the entire cell division cycle can be generated simultaneously. Cells synchronized by this technique were challenged with DMSO and analyzed for kinetics of commitment to the differentiation program. Our results indicate that populations of cells in G1 or G2 at the time of addition of inducer give rise to a greater proportion of committed cells than an unfractionated population, while cells in S phase result in a lower percentage of committed cells than the unfractionated population when cultured in DMSO. 相似文献
5.
Changes in intracellular proteinase activities were examined during DMSO-induced differentiation of murine erythroleukemia cells. Suc-APA-MCA hydrolytic activity was significantly decreased, and apparent ATP-dependent multicatalytic proteinase activity was also decreased with MEL cell differentiation. Cathepsin B and L activity was mainly present in the microsomal fraction of control cells, but a part of this activity had shifted to the lysosomal fraction of differentiated cells. With the translocation of cathepsin B from the microsomal to the lysosomal fraction, the pro-enzyme form of cathepsin B was converted into the mature enzyme. These results suggest that the lysosomal pathway contributes to the degradation of specific proteins with cell differentiation. 相似文献
6.
7.
The changes in rate of protein synthesis and cell division and the distribution of polyribosomes and globin mRNA on the polyribosomes of Friend erythroleukemia (FL) cells exposed to 2% DMSO and maintained at low cell density, were examined at different times after exposure to DMSO. The rate of protein synthesis and the capacity of cells to divide declined in concert to 50% of the level found in untreated cell cultures at 24 hours after exposure. Thereafter these rates recovered to 70% of the rate found in untreated control cultures until 96 hours post-exposure and then irreversibly declined as the cells lost the capacity to divide. The proportion of ribosomes present as polyribosomes in cells exposed to DMSO paralleled the capacity of these cells to synthesize protein. The distribution of polyribosomes analyzed by sedimentation in sucrose gradients demonstrated that a discrete, abundant class of polyribosomes composed of pentamers to heptamers appeared as early as 48 hours after exposure to DMSO. The appearance of an abundant class of polyribosomes was correlated with globin synthesis by demonstrating that a discrete class of polyribosomes arises in cells treated with the inducers hexamethylene bisacetamide and hemin. 相似文献
8.
Activin A, a protein homologous to transforming growth factor beta, was shown to induce hemoglobin synthesis in murine erythroleukemia (MEL) cells and was also termed erythroid differentiation factor (EDF) (Eto, Y., Tsuji, T., Takezawa, M., Takano, S., Yokogawa, Y., and Shibai, H. (1987) Biochem. Biophys. Res. Commun. 142, 1095-1103). We found that activin A/EDF also induced thromboxane (TX) A2 synthetic activity in these cells. Synthesis of TXA2 from arachidonic acid is catalyzed by cyclooxygenase and TX synthase. Activin A/EDF induced the latter TX synthase activity, whereas the cyclooxygenase activity was constitutively expressed. The induction of this enzyme activity was inhibited by cycloheximide, suggesting that activin A/EDF induced de novo protein synthesis of TX synthase. Furthermore, we studied the relationship between the induction of TXA2 synthetic activity and erythroid differentiation in MEL cells, since the former is not an erythroid phenotype. We found 1) that the two responses to activin A/EDF were distinctly affected by the initial cell density; 2) that the dose-response curves for activin A/EDF were similar (ED50 = approximately 100 pM), whereas the time course of induction of TXA2 synthetic activity was much faster; and 3) that other erythroid differentiation inducers of MEL cells, namely dimethyl sulfoxide and hexamethylene bisacetamide, had little or no effect on TXA2 synthesis. These results indicate that activin A/EDF induces TXA2 synthetic activity independently of erythroid differentiation. 相似文献
9.
Microarrays have become a routine tool for biomedical research. Data quality assessment is an essential part of the analysis, but it is still not easy to perform objectively or in an automated manner, and as a result it is often neglected. Here, we compared two strategies of array-level quality control using five publicly available microarray experiments: outlier removal and array weights. We also compared them against no outlier removal and random array removal. We find that removing outlier arrays can improve the signal-to-noise ratio and thus strengthen the power of detecting differentially expressed genes. Using array weights is similarly effective, but its applicability is more limited. The quality metrics presented here are implemented in the Bioconductor package arrayQualityMetrics. 相似文献
10.
Microarray analysis of differentially expressed background genes in rats following hemorrhagic shock
To uncover the contribution of the diversity of the genetic backgrounds to the pathogenesis of hemorrhagic shock, we employed
male Sprague-Dawley rats to establish a controlled 2.5 ml/100 g total body weight fixed-volume hemorrhagic shock and left
lobular hepatectomy model. RNA was isolated from the liver samples taken from the rats (survival group: rats survived over
24 h after shock; and dead group: rats died within 1 h after shock, n = 3 per group), and subjected to microarray using the illuminaTM chips for rat cDNA (27,342 genes, >700,000 probes). The results demonstrated that the rats had about 50% survival rate and
100 genes were identified differentially expressed in the two groups. Of these genes, 47 genes were up-regulated and 53 genes
down-regulated. Real-time PCR confirmed the differential expression for Aldh1a1, Aldh1a7, Aoc3, Cyp26al, Hdc and Ephx2 genes.
Pathway analysis revealed that these genes are involved in circadian rhythm, beta-Alanine metabolism, histidine metabolism,
biosynthesis of unsaturated fatty acids, glycine, serine and threonine metabolism, vitamin B6 metabolism, as well as arginine
and proline metabolism. Therefore, our study provided a global molecular view on the contribution of genetic backgrounds to
the response to hemorrhagic shock. 相似文献
11.
Nuclear organization of splicing snRNPs during differentiation of murine erythroleukemia cells in vitro 总被引:3,自引:2,他引:3
下载免费PDF全文

《The Journal of cell biology》1993,123(5):1055-1068
12.
13.
Microarray data analysis: a practical approach for selecting differentially expressed genes
下载免费PDF全文

David M Mutch Alvin Berger Robert Mansourian Andreas Rytz Matthew-Alan Roberts 《Genome biology》2001,2(12):preprint00-29
Background
The biomedical community is rapidly developing new methods of data analysis for microarray experiments, with the goal of establishing new standards to objectively process the massive datasets produced from functional genomic experiments. Each microarray experiment measures thousands of genes simultaneously producing an unprecedented amount of biological information across increasingly numerous experiments; however, in general, only a very small percentage of the genes present on any given array are identified as differentially regulated. The challenge then is to process this information objectively and efficiently in order to obtain knowledge of the biological system under study and by which to compare information gained across multiple experiments. In this context, systematic and objective mathematical approaches, which are simple to apply across a large number of experimental designs, become fundamental to correctly handle the mass of data and to understand the true complexity of the biological systems under study. 相似文献14.
Microarray profile of differentially expressed genes in a monkey model of allergic asthma 总被引:1,自引:1,他引:1
Zou J Young S Zhu F Gheyas F Skeans S Wan Y Wang L Ding W Billah M McClanahan T Coffman RL Egan R Umland S 《Genome biology》2002,3(5):research0020.1-research002013
Background
Inhalation of Ascaris suum antigen by allergic monkeys causes an immediate bronchoconstriction and delayed allergic reaction, including a pulmonary inflammatory infiltrate. To identify genes involved in this process, the gene-expression pattern of allergic monkey lungs was profiled by microarrays. Monkeys were challenged by inhalation of A. suum antigen or given interleukin-4 (IL-4) treatment; lung tissue was collected at 4, 18 or 24 h after antigen challenge or 24 h after IL-4. Each challenged monkey lung was compared to a pool of normal, unchallenged monkey lungs.Results
Of the approximately 40,000 cDNAs represented on the microarray, expression levels of 169 changed by more than 2.5-fold in at least one of the pairwise probe comparisons; these cDNAs encoded 149 genes, of which two thirds are known genes. The largest number of regulated genes was observed 4 h after challenge. Confirmation of differential expression in the original tissue was obtained for 95% of a set of these genes using real-time PCR. Cluster analysis revealed at least five groups of genes with unique expression patterns. One cluster contained genes for several chemokine mediators including eotaxin, PARC, MCP-1 and MCP-3. Genes involved in tissue remodeling and antioxidant responses were also identified as regulated by antigen and IL-4 or by antigen only.Conclusion
This study provides a large-scale profile of gene expression in the primate lung following allergen or IL-4 challenge. It shows that microarrays, with real-time PCR, are a powerful tool for identifying and validating differentially expressed genes in a disease model. 相似文献15.
Microarray analysis of genes differentially expressed in hepG2 cells cultured in simulated microgravity: Preliminary report 总被引:6,自引:0,他引:6
Khaoustov VI Risin D Pellis NR Yoffe B 《In vitro cellular & developmental biology. Animal》2001,37(2):84-88
Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells. 相似文献
16.
17.
Changes in multicatalytic proteinase activity during differentiation were investigated using Me2SO-induced differentiation of murine erythroleukemia cells as a model. The apparent ATP-dependent multicatalytic proteinase activity decreased in the Me2SO-treated cells with ATP-dependent incorporation of [3H]diisopropyl fluorophosphate decreasing notably after Me2SO-treatment. This decrease in activity does not seem to arise from a cessation of cell-proliferation, because no significant changes in proteinase activity were observed under different culture conditions. Hydroxyapatite column chromatography was employed to analyze the form of multicatalytic proteinase. It was clearly demonstrated that the 26S form of the proteinase decrease in the differentiated cells relative to normal cells. Multicatalytic proteinase-associated proteins that bind to the proteinase in an ATP-dependent manner were purified on an anti-multicatalytic proteinase IgG conjugated column. Only a small amount of protein was recovered from the differentiated cells. These results suggest that the decrease in multicatalytic proteinase-associated proteins that occurs upon cell-differentiation abolishes the ATP-dependent activity of the proteinase. 相似文献
18.
A method for the clonal analysis of murine erythroleukemia cells has been developed which allows the precise characterization of the number of progeny produced by each cell and the degree of differentiation of each progeny cell. The potential of almost every cell in the culture can be monitored because a plating efficiency close to 100% has been achieved. The effects of treatment with an inducer of differentiation (DMSO) on the proliferative capacity of the treated cells have been studied with this technique. Cells from a mass culture treated with inducer give rise to colonies of differentiated progeny when subsequently cloned in the absence of inducer. Colonies exhibiting this phenotype represent the progeny of cells committed to the differentiation pathway by treatment with inducer. We observe that the commitment decision limits the subsequent proliferative capacity of the cell to four additional cell divisions. A quantitative analysis suggests that the commitment decision for each cell is made in a stochastic manner. Irreversible commitment to the expression of differentiated functions occurs with discrete probability per cell generation for many cell generations. The value for this probability is a function of the concentration of inducer (DMSO). A correlative biochemical study suggests that an irreversible commitment decision by a significant proportion of the population precedes or accompanies increases in cytoplasmic globin mRNA levels, one of the earliest detectable biochemical markers for erythroid differentiation in this system.A specific kinetic model based on these considerations has been developed to predict clonal phenotypes as a function of time and probability of commitment. Quantitative predictions based on this model are in excellent agreement with experimental observations. The effectiveness of a stochastic model in predicting the behavior of this system is discussed in relation to the stochastic behavior of normal hematopoiesis and the biochemical mechanisms which control these differentiation programs. 相似文献
19.
B Maresca B M Jaffe M G Santoro 《Biochemical and biophysical research communications》1979,91(3):1148-1156
The importance of cysteine and sulfhydryl groups has been demonstrated in relation to the differentiation and respiration of Friend erythroleukemia cells (FLC). The respiratory rate of undifferentiated FLC was higher basally (5.06 ± 0.16 vs. 3.10 ± 0.09 nmoles 02/min/106 cells) and was further 70% stimulated by addition of cysteine, whereas DMSO-induced differentiated cells were insensitive. A sulfhydryl blocking agent (PCMS) was capable of maintaining the differentiated state of FLC cultured in the absence of DMSO and this effect appeared to be reversible upon removal of the PCMS. 相似文献