首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The green peach aphid (Myzus persicae) is a phloem-feeding insect that causes economic damage on a wide array of crops. Using a luminol-based assay, a superoxide-responsive reporter gene (Zat12::luciferase), and a probe specific to hydrogen peroxide (HyPer), we demonstrated that this aphid induces accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. Similar to the apoplastic oxidative burst induced by pathogens, this response to aphids was rapid and transient, with two peaks occurring within 1 and 4 hr after infestation. Aphid infestation also induced an oxidative response in the cytosol and peroxisomes, as measured using a redox-sensitive variant of green fluorescent protein (roGFP2). This intracellular response began within minutes of infestation but persisted 20 hr or more after inoculation, and the response of the peroxisomes appeared stronger than the response in the cytosol. Our results suggest that the oxidative response to aphids involves both apoplastic and intracellular sources of ROS, including ROS generation in the peroxisomes, and these different sources of ROS may potentially differ in their impacts on host suitability for aphids.  相似文献   

2.
The causal relationships among ethylene emission, oxidative burst and tissue damage, and the temporal expression patterns of some ethylene biosynthetic and responsive genes, were examined in the Never ripe (Nr) tomato (Lycopersicon esculentum) mutant and its isogenic wild type (cv. Pearson), to investigate the role played by the ethylene receptor LE-ETR3 (NR) in mediating the plant response to ozone (O(3)). Tomato plants were used in a time-course experiment in which they were exposed to acute O(3) fumigation with 200 nl l(-1) O(3) for 4 h. The pattern of leaf lesions indicated similar sensitivities to O(3) for cv. Pearson and Nr. In both genotypes, O(3) activated a hydrogen peroxide (H(2)O(2))-dependent oxidative burst, which was also ethylene-driven in Nr leaves. Ozone induced some ethylene and jasmonate biosynthetic and inducible genes, although with different timings and to different extents in the two genotypes. The overall data indicate that Nr retains partial sensitivity to ethylene, suggesting only a marginal role of the NR receptor in mediating the complex response of tomato plants to O(3).  相似文献   

3.
The function of fungal volatiles in fungal-plant interactions is poorly understood. The aim here was to address this lack of knowledge, focusing on truffles, ectomycorrhizal fungi that are highly appreciated for their aroma. The effect of volatiles released by truffles was tested on Arabidopsis thaliana in a closed chamber bioassay. The volatiles produced by Tuber melanosporum, Tuber indicum and Tuber borchii fruiting bodies inhibited A. thaliana in terms of root length and cotyledon leaf size, and in some cases induced a bleaching of the seedlings, thus indicating toxicity. Ten synthetic volatiles were tested in a similar way. The strongest inhibitory effect was observed with C(8) molecules such as 1-octen-3-ol, an alcohol with a typical 'fungal smell'. Two of these C(8) compounds were further tested to investigate their mechanism of action. 1-Octen-3-ol and trans-2-octenal induced an oxidative burst (hydrogen peroxide, H(2)O(2)) in the A. thaliana leaves as well as a strong increase in the activities of three reactive oxygen species (ROS)-scavenging enzymes. These results demonstrate that fungal volatiles inhibit the development of A. thaliana and modify its oxidative metabolism. Even though limited to laboratory observations, these results indicate the presence of a hitherto unknown function of fungal volatiles as molecules that mediate fungal-plant interactions.  相似文献   

4.
Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses.  相似文献   

5.
6.
To investigate the role of oxidative stress and/or mitochondrial impairment in the occurrence of acute kidney injury (AKI) during sepsis, we developed a sepsis-induced in vitro model using proximal tubular epithelial cells exposed to a bacterial endotoxin (lipopolysaccharide, LPS). This investigation has provided key features on the relationship between oxidative stress and mitochondrial respiratory chain activity defects.  相似文献   

7.
The message of nitric oxide in cadmium challenged plants   总被引:3,自引:0,他引:3  
During the last decade it has been found that cadmium (Cd), one of the most toxic elements occurring in polluted environments, interferes with nitric oxide (NO), a multifunctional signaling molecule in living organisms. The formation of NO has been demonstrated in vivo in various plant tissues exposed to Cd stress, but unfortunately, the time and intensity of NO generation, relatively frequently shows conflicting data. What is more, there is still limited information regarding the functional role of endogenously produced NO in plants challenged with heavy metals. The first pharmacological approaches revealed that exogenously applied NO can alleviate cadmium toxicity in plants, promoting the direct scavenging of reactive oxygen species (ROS) or activating antioxidant enzymes. However, recent reports have indicated that NO even contributes to Cd toxicity by promoting Cd uptake and participates in metal-induced reduction of root growth. In view of this heterogeneous knowledge, much more puzzling if we consider results first obtained using exogenous NO sources, this review is focused mainly on the implication of endogenous NO in plant response to Cd exposure. Furthermore, a basic draft for NO mode of action during cadmium stress is proposed.  相似文献   

8.
9.
Activated neutrophils generate the potent oxidant hypochlorous acid (HOCl) from the enzyme myeloperoxidase (MPO). A proposed bio-marker for MPO-derived HOCl in vivo is 3-chlorotyrosine, elevated levels of which have been measured in several human inflammatory pathologies. However, it is unlikely that HOCl is produced as the sole oxidant at sites of chronic inflammation as other reactive species are also produced during the inflammatory response. The work presented shows that free and protein bound 3-chlorotyrosine is lost upon addition of the pro-inflammatory oxidants, HOCl, peroxynitrite, and acidified nitrite. Furthermore, incubation of 3-chlorotyrosine with activated RAW264.7 macrophages or neutrophil-like HL-60 cells resulted in significant loss of 3-chlorotyrosine. Therefore, at sites of chronic inflammation where there is concomitant ONOO and HOCl formation, it is possible measurement of 3-chlorotyrosine may represent an underestimate of the true extent of tyrosine chlorination. This finding could account for some of the discrepancies reported between 3-chlorotyrosine levels in tissues in the literature.  相似文献   

10.
11.
The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis and enhanced cell membrane peroxidation, as exemplified by increased O2 production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis high-temperature acclimation (HH) showed much higher photosynthetic rates than those without pre-anthesis high-temperature acclimation (CH). Leaves of HH plants exhibited a higher Chl a/b ratio and lower chlorophyll/carotenoid ratio and superoxide anion radical release rate compared with those of the CH plants. In addition, antioxidant enzyme activities in HH plants were significantly higher than in CH. Coincidently, expressions of photosythesis-responsive gene encoding Rubisco activase B (RcaB) and antioxidant enzyme-related genes encoding mitochondrial manganese superoxide dismutase (Mn-SOD), chloroplastic Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and cytosolic glutathione reductase (GR) were all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant enzymes-related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号