首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes of the Isoleucine-Valine Pathway in Acinetobacter   总被引:2,自引:2,他引:0       下载免费PDF全文
Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase.  相似文献   

2.
The leucine analogue 5',5',5',-trifluoroleucine (fluoroleucine) replaced leucine for repression of the isoleucine-valine biosynthetic enzymes in Salmonella typhimurium. In contrast, the analogue had no effect on derepression of the leucine biosynthetic enzymes in leucine auxotrophs grown on limiting amounts of leucine. The effect of fluoroleucine on repression appeared to be specific for leucine since derepression of the isoleucine-valine enzymes due to an isoleucine or valine limitation was not affected by the analogue. The prevention of derepression by fluoroleucine was probably due to repression and not to the formation of false proteins, since the analogue had no effect on the derepression of a number of enzymes unrelated to the isoleucine-valine pathway. Fluoroleucine was able to attach to leucine transfer ribonucleic acid (tRNA) as evidenced by the ability of the analogue to protect about 70% of leucine tRNA from oxidation by periodate. We propose that the differential effects of fluoroleucine on repression are due to differences in the ability of the analogue to bind to the various species of leucine tRNA.  相似文献   

3.
Regulation of the biosynthesis of four of the five enzymes of the isoleucine-valine pathway was studied in Saccharomyces cerevisiae. A method is described for limiting the growth of a leucine auxotroph by using valine as a competitor for the permease. Limitation for isoleucine and valine was accomplished by the use of peptides containing these amino acids conjugated with glycine as nutritional supplements for auxotrophs. The enzymes were repressed on synthetic medium containing isoleucine, valine, and leucine, as well as on broth supplemented with these amino acids. Limitation for any of the three branched-chain amino acids led to derepression of the isoleucine-valine biosynthetic pathway. Maximal derepression ranged from 3-fold for threonine deaminase to approximately 10-fold for acetohydroxyacid synthase. (Two of the enzymes, acetohydroxyacid synthase and dihydroxyacid dehydrase, may be controlled by a mechanism different from that regulating threonine deaminase.) Possible molecular mechanisms for multivalent repression are discussed.  相似文献   

4.
  1. The influence of varying amounts of amino acids on the uptake of threonine, isoleucine, valine and leucine and their degradation to higher alcohols was investigated using a mutant strain of Saccharomyces cerevisiae, mating type a, genetic markers ade2, hom2, thr4, ilv2, leu1.
  2. The cell mass is increased by increasing concentrations of threonine, isoleucine, valine and leucine, the latter two resulting in a higher dry weight. The amino acids are completely utilised at low concentrations. At higher contents up to 20% of the amino acids remain in the medium. The uptake of threonine, isoleucine, valine and leucine depends on the relative amounts of the concentrations of these amino acids in the medium. A greater amount of an amino acid is taken up if its concentration is comparatively higher than those of the other amino acids. There is a competition between the amino acids for the uptake into the cells.
Higher amounts of intracellular isoleucine and leucine are converted to 2-and 3-methylbutanol when compared with the degradation of valine and threonine to isobutanol and n-propanol-1, isoleucine and leucine up to 90%, valine up to 24% and threonine up to 20%. There is a competition between the four amino acids for their degradation to the corresponding higher alcohols. This behaviour confirms the earlier assumption of a degradation of the four amino acids by unspecific enzymes.  相似文献   

5.
A Nicotiana plumbaginifolia cell line able to grow in the presence of high doses of valine was isolated following -rays mutagenesis. The selected clone, named D5R5, showed a growth rate higher than that of wild-type. It was less sensitive also to an equimolar mixture of the three branched-chain amino acids, but did not display cross-resistance to isoleucine and leucine. The increased tolerance was due to neither a reduced valine uptake, nor a modification in the level or sensitivity to feed-back inhibition by valine of the first common enzyme (and the main regulative site) in isoleucine, leucine and valine synthesis, acetohydroxyacid synthase (AHAS). When wild-type cells were fed with valine or equimolar mixtures of the three aminoacids, a decrease in AHAS level was found. On the contrary, the level of extractable AHAS activity from D5R5 cells was significantly less affected by similar treatments, suggesting that some alteration in enzyme modulation mechanism(s) could account for valine resistance.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acid - FAD flavin adenine dinucleotide - ILV equimolar mixture of isoleucine, leucine and valine - TPP thiamine pyrophosphate  相似文献   

6.
The synthesis of the three types of acetolactate synthase (EC 4.1.3.18) which are responsible for the biosynthesis os isoleucine and valine, was observed in Aerobacter aerogenes I-12, an isoleucine-requiring mutant, when grown on the four kinds of media. When the cells were grown on isoleucine-rich medium, acetolactate synthase sensitive to feedback inhibition and having an optimum pH at 8.0 was formed. By increasing the amount of potassium phosphate in the medium, the catabolite repression of the enzyme having an optimum pH at 6.0 and which is insensitive to feedback inhibition, was released. In contrast, acetolactate synthase having an optimum pH at 8.0 and insensitive to feedback inhibition was formd when isoleucine was limited, irrespective of phosphate concentrations. Two insensitive enzymes were not regulated by isoleucine, leucine and valine, although sensitive pH 8.0 enzyme was repressed by them. Thus, it may be assumed that the synthesis of insensitive pH 8.0 enzyme were repressed by limiting the amount of isoleucine is still open.  相似文献   

7.
Regulation of branched-chain amino acid transport in Escherichia coli.   总被引:16,自引:14,他引:2       下载免费PDF全文
The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed.  相似文献   

8.
M Freundlich 《Cell》1977,12(4):1121-1126
Derepression of the isoleucine and valine biosynthetic enzymes was strongly impaired in a relA strain of E. coli K-12 grown in an amino acid-glucose medium. The expression of the isoleucine and valine operons during leucine starvation was markedly defective in the relA mutant as compared to an isogenic rel+ strain. Downshift to a poor carbon and energy source or the addition of cyclic AMP to the glucose medium allowed normal derepression in the relA mutant of one of the isoleucine and valine enzymes, acetohydroxy acid synthase. The other isoleucine and valine enzymes failed to derepress under these conditions, in contrast to the high enzyme levels in the rel+ parent. No increase in acetohydroxy acid synthase was found in relA cya or relA crp strains during glycerol or pyruvate downshift. Cyclic AMP allowed derepression in the relA cya mutant but not in the relA crp strain. These data strongly suggest that the relA requirement for normal expression of acetohydroxy acid synthase can be replaced by cyclic AMP.  相似文献   

9.
Isolation of mutants lacking branched-chain amino acid transaminase.   总被引:1,自引:0,他引:1  
Variants of the Chinese hamster ovary cell have been isolated which can no longer grow when valine, leucine, or isoleucine is replaced in the culture medium by its respective alpha-keto acid: alpha-ketoisovaleric acid, alpha-ketoisocaproic acid, or alpha-keto-beta-methylvaleric acid. These variants lack branched-chain amino acid transaminase activity. Evidence is presented indicating these variants to be single gene mutants. Genetic evidence is also presented confirming previous biochemical evidence that a single enzyme carries out transaminase functions on valine, leucine, and isoleucine. The branched-chain transaminase-deficient (trans-) mutants can be reverted to wild-type behavior by treatment with mutagenic agents. These mutants promise to be useful in exploring regulatory mechanisms in biochemical, genetic, and cancer research.  相似文献   

10.
To examine which branched-chain amino acids affect the plasma glucose levels, we investigated the effects of leucine, isoleucine, and valine (0.3 g/kg body weight p.o.) in normal rats using the oral glucose tolerance test (OGTT, 2 g/kg). A single oral administration of isoleucine significantly reduced plasma glucose levels 30 and 60 min after the glucose bolus, whereas administration of leucine and valine did not produce a significant decrease. Oral administration of valine significantly enhanced the plasma glucose level at 30 min after the glucose administration and leucine had a similar effect at 120 min. At each measurement timepoint, the insulin levels of the treated groups were lower than that of the control group. We then investigated the effects of leucine, isoleucine or valine at the same concentration (1 mM) on glucose metabolism in C(2)C(12) myotubes in the absence of insulin. Glucose consumption was elevated by 16.8% in the presence of 1 mM isoleucine compared with the control. Conversely, 1 mM leucine or valine caused no significant changes in glucose consumption in the C(2)C(12) myotubes. The 2-deoxyglucose uptake of C(2)C(12) myotubes significantly increased upon exposure to 1-10 mM isoleucine and 5-10 mM leucine. However, isoleucine caused no significant difference in glycogen synthesis in C(2)C(12) myotubes, although leucine and valine caused a significant increase in intracellular glycogen compared with the control. The isoleucine effect on glucose uptake was mediated by phosphatidylinositol 3-kinase (PI3K), but was independent of mammalian target of rapamycin (mTOR). These results suggest that isoleucine stimulates the insulin-independent glucose uptake in skeletal muscle cells, which may contribute to the plasma glucose-lowering effect of isoleucine in normal rats.  相似文献   

11.
Long-term supplementation of branched-chain amino acids (BCAA) improves hypoalbuminemia in patients with cirrhosis. Our previous findings have suggested that the binding of polypyrimidine-tract-binding protein (PTB) to rat albumin mRNA attenuates its translation. The aim of the present study was to investigate the role of PTB in the regulation of albumin synthesis by BCAA in human hepatoma cells. HepG2 cells were cultured in a medium containing no amino acids (AA-free medium), a medium containing only 1 amino acid (a BCAA: valine, leucine or isoleucine) or a medium containing all 20 amino acids (AA-complete medium). HepG2 cells cultured in AA-complete medium secreted much more albumin than cells cultured in AA-free medium, with no difference in albumin mRNA levels. In cells cultured in AA-free medium, nuclear export of PTB was observed, and the level of the albumin mRNA-PTB complex was greater than in cells cultured in AA-complete medium. Addition of amino acids stimulated nuclear import of PTB. However, addition of amino acids with rapamycin inhibited the nuclear import of PTB. The addition of leucine, but not of valine or isoleucine, to AA-free medium increased albumin secretion and stimulated the nuclear import of PTB. These data indicate that the mammalian target of rapamycin is involved in the regulation of PTB localization and that leucine promotes albumin synthesis by inhibiting the formation of the albumin mRNA-PTB complex.  相似文献   

12.
The regulation of the formation of isoleucine-valine biosynthetic enzymes was examined to elucidate the mechanism of isoleucine-valine accumulation by alpha-aminobutyric acid-resistant (abu-r) mutants of Serratia marcescens. In the isoleucine-valine auxotroph, l-threonine dehydratase, acetohydroxy acid synthetase, and transaminase B were repressed when isoleucine, valine, and leucine were simultaneously added to minimal medium. These enzymes were derepressed at the limitation of any single branched-chain amino acid. Pantothenate, which stimulated growth of this auxotroph, had no effect on the enzyme levels. It became evident from these results that in S. marcescens isoleucine-valine biosynthetic enzymes are subject to multivalent repression by three branched-chain amino acids. The abu-r mutants had high enzyme levels in minimal medium, with or without three branched-chain amino acids. Therefore, in abu-r mutants, isoleucine-valine biosynthetic enzymes are genetically derepressed. This derepression was considered to be the primary cause for valine accumulation and increased isoleucine accumulation.  相似文献   

13.
Branched-chain amino acids (BCAAs) modulate various cellular functions, in addition to providing substrates for the production of proteins. In this study, we examined the effect of BCAAs on the secretion of hepatocyte growth factor (HGF) by hepatic stellate cells. A hepatic stellate cell clone was cultured in medium supplemented with various concentrations of valine, leucine, or isoleucine. Of these BCAAs, leucine markedly induced an increase in the levels of HGF in the medium in a dose-dependent manner. The addition of valine or isoleucine had no significant effect on HGF levels in the medium. The difference in levels of HGF in the medium between leucine-treated and non-treated cells was enhanced by the incubation period. These results demonstrate that, among BCAAs, leucine stimulates the secretion of HGF by cultured hepatic stellate cells.  相似文献   

14.
Mutations in two chromosomal genes of Escherichia coli, cpxA and cpxB, produced a temperature-sensitive growth defect that was remedied specifically by the addition of isoleucine and valine to the minimal medium. This auxotrophy was manifested only when the medium contained exogenous leucine, suggesting that mutant cells fail to elaborate active acetohydroxy acid synthase, isozyme I. In the presence of leucine, this enzyme was required to catalyze the first reaction common to the biosynthesis of isoleucine and valine. Measurements of enzyme activity in crude extracts showed that mutant cells were seven- to eightfold deficient in active isozyme I when the cells were grown in the presence of leucine. When grown in the absence of leucine, mutant cells contained more acetohydroxy acid synthase activity. We attribute this activity to isozyme III, the product of the ilvHI genes, which are derepressed in the absence of exogenous leucine. The cpxA and cpxB mutations appear to affect the production of active isozyme I, rather than its activity, since (i) neither the cpxA nor the cpxB gene mapped near the structural gene for isozyme I (ilvB), (ii) the growth of mutant cells shifted from the permissive (34 degrees C) to the nonpermissive (41 degrees C) temperature did not immediately cease, but declined gradually over a period corresponding to several normal generation times, and (iii) the enzyme from mutant cells grown at 34 degrees C was as stable at 41 degrees C as the enzyme from cpx+ cells.  相似文献   

15.
The control of isoleucine and valine biosynthesis was examined in a hisU mutant of Salmonella typhimurium. It was found that the levels of expression of the ilvEDA operon and the ilvC gene were significantly reduced relative to an isogenic normal strain when grown in unsupplemented medium. In contrast, this hisU mutant exhibited only a slight reduction in total acetohydroxy acid synthase activity relative to that of the wild type. The hisU and hisU+ strains were examined to determine their derepressibility upon either leucine, valine or isoleucine limitation. Only during leucine limitation did the hisU strain exhibit impaired derepressibility relative to the hisU+ strain. In addition, repression control of threonine deaminase (the ilvA product of the ilvEDA operon) in this hisU mutant was refractory to exogenous supplementation with either leucine or valine. This response is in distinct contrast to that of the normal strain, in which the single addition of leucine or valine results in a significant reduction in the level of threonine deaminase.  相似文献   

16.
Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC 4.1.3.18), NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC 1.1.1.85), were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears that the branched-chain amino acid transport systems and biosynthetic enzymes in E. coli strains K-12 and B/r and in S. typhimurium strain LT2 are not regulated together by a cis-dominate type of mechanism, although both systems may have components in common.  相似文献   

17.
The regulation of synthesis of the valine-alanine-alpha-aminobutyrate transaminase (transaminase C) was studied in Escherichia coli mutants lacking the branched-chain amino acid transaminase (transaminase B). An investigation was made of two strains, CU2 and CU2002, each carrying the same transaminase B lesion but exhibiting different growth responses on a medium supplemented with branched-chain amino acids. Both had the absolute isoleucine requirement characteristic of ilvE auxotrophs, but growth of strain CU2 was stimulated by valine, whereas that of strain CU2002 was markedly inhibited by valine. Strain CU2002 behaved like a conditional leucine auxotroph in that the inhibition by valine was reversed by leucine. Results of enzymatic studies showed that synthesis of transaminase C was repressed by valine in strain CU2002 but not in strain CU2. Inhibition by valine in strain CU2002 appears to be the combined effect of repression on transaminase C synthesis and valine-dependent feedback inhibition of alpha-acetohydroxy acid synthase activity, causing alpha-ketoisovalerate (and hence leucine) limitation. The ilvE markers of strains CU2 and CU2002 were each transferred by transduction to a wild-type genetical background. All ilvE recombinants from both crosses resembled strain CU2002 and were inhibited by valine in the presence of isoleucine. Thus, strain CU2 carries an additional lesion that allows it to grow on a medium containing isoleucine plus valine. It is concluded that conditional leucine auxotrophy is characteristic of mutants carrying an ilvE lesion alone.  相似文献   

18.
Optimum conditions for the growth ofPseudomonas arvilla, a hydrocarbon utiliser, have been studied. The microorganism produced economic cell yield at pH 5.7 and 4% kerosene concentration. C10-C16 hydrocarbons were utilised by the strain. The growth was maximum on n-decane. Supplementation of the hydrocarbon medium with 0.5% glucose stimulated the growth. Glutamic acid 16.0 mg; leucine 9.0 mg; valine 10.0 mg; methionine 2.5 mg; arginine 2.5 mg; histidine 1.0 mg were present in 100 ml of the broth. Cell protein contained leucine 13.69%, isoleucine 4.9%, histidine 4.37%, tryptophan 2.33%, methionine 1.8% and arginine 2.70%.  相似文献   

19.
Salmonella typhimurium strain CV123 (ara-9 gal-205 flrB1), isolated as a mutant resistant to trifluoroleucine, has derepressed and constitutive levels of enzymes forming branched-chain amino acids. This strain grows more slowly than the parent at several temperatures, both in minimal medium and nutrient broth. It overproduces and excretes sizeable amounts of leucine, valine, and isoleucine in comparison with the parental strain. Both leuS (coding for leucyl-transfer ribonucleic acid [tRNA]synthetase) and flrB are linked to lip (min 20 to 25) by P1 transduction, whereas only leuS is linked to lip by P22 transduction. Strain CV123 containing an F' lip(+) episome from Escherichia coli has repressed levels of leucine-forming enzymes, indicating that flrB(+) is dominant to flrB. Leucyl-tRNA synthetase from strain CV123 appears to be identical to the leucyl-tRNA synthetase in the parent. No differences were detected between strain CV123 and the parent with respect to tRNA acceptor activity for a number of amino acids. Furthermore, there was no large difference between the two strains in the patterns of leucine tRNA isoaccepting species after fractionation on several different columns. Several other flrB strains exhibited temperature-sensitive excretion of leucine, i.e., they excreted leucine at 37 C but not 25 C. In one such strain, excretion at 37 C was correlated with derepression of some enzymes specified by ilv and leu. These latter results suggest that flrB codes for a protein.  相似文献   

20.
The heterotrophic growth of Thiobacillus acidophilus was inhibited by branched-chain amino acids; valine, isoleucine, and leucine. The inhibition by valine and leucine were partially reversed by isoleucine, and the inhibition by isoleucine was partially reversed by valine. Inhibitions by methionine or threonine were partially reversed when both amino acids were present in the growth medium. Inhibition by tyrosine was increased by phenylalanine or tryptophan. Cystine completely inhibited growth. Other amino acids tested produced little or no inhibition. Acetohydroxy acid synthetase (AHAS) activity was demonstrated in crude extracts of T. acidophilus. In crude extracts the optimum pH was 8.5 with a shift to 9.0 in the presence of valine. Valine was the only branched-chain amino acid which inhibited the AHAS activity. The presence of only one peak of AHAS activity upon centrifugation in linear glycerol density gradients demonstrated that the AHAS activity sediments as one component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号