首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Notch signaling pathway plays an important role in the early steps of T cell development and in the generation of T cell tumors, but its role in the CD4 vs CD8 lineage decision is controversial. Notch1 is not essential for CD4 or CD8 T cell development; however, there are suggestions that multiple Notch family members may act in a redundant fashion during thymic development. In theory, expressing a constitutively activated form of Notch in CD4(+)CD8(+) thymocytes could provide clues about the normal role of Notch in developing CD4 and CD8 T cells. Unfortunately, two different studies of transgenic mice expressing activated forms of Notch1 (Notch1IC) led to conflicting conclusions. In this study, we re-examine the effect of the two Notch1IC transgenes on thymocyte development. We find that both Notch1IC transgenic lines display a decrease in CD4 single positive (SP) thymocytes and a corresponding increase in CD8 SP thymocytes. The enhanced development of CD8 SP thymocytes is dependent on either class I or II MHC. Thus, data from two different Notch1IC transgenic lines indicate that Notch activity promotes CD8 and inhibits CD4 SP development. We suggest that the discrepancies in previous reports of Notch1IC transgenic mice are due to differences in the propensity of the two different transgenic lines to develop tumors.  相似文献   

2.
Intrathymic positive selection matches CD4-CD8 lineage differentiation to MHC specificity. However, it is unclear whether MHC signals induce lineage choice or simply select thymocytes of the appropriate lineage. To investigate this issue, we assessed thymocytes undergoing positive selection for expression of the CD8 lineage markers perforin and Runx3. Using both population-based and single-cell RT-PCR analyses, we found large subsets of MHC class II (MHC-II)-signaled thymocytes expressing these genes within the CD4+ 8+ and CD4+ 8(int), but not the CD4+ 8- populations of signaling competent mice. This indicates that MHC-II signals normally fail to impose CD4 differentiation and further implies that the number of mature CD8 single-positive (SP) thymocytes greatly underestimates CD8 lineage choice. We next examined whether MHC-II-restricted CD4+ 8- thymocytes remain competent to initiate CD8 lineage gene expression. In mice in which expression of the tyrosine kinase Zap70 and thereby TCR signaling were impaired selectively in SP thymocytes, MHC-II-signaled CD4+ 8- thymocytes expressed perforin and Runx3 and failed to up-regulate the CD4 marker Thpok. This indicated that impairing TCR signals at the CD4 SP stage switched gene expression patterns from CD4- to CD8-lineage specific. We conclude from these findings that MHC-II-signaled thymocytes remain competent to initiate CD8-specific gene expression even after CD8 down-regulation and that CD4 lineage differentiation is not fixed before the CD4 SP stage.  相似文献   

3.
During thymic development the recognition of MHC proteins by developing thymocytes influences their lineage commitment, such that recognition of class I MHC leads to CD8 T cell development, whereas recognition of class II MHC leads to CD4 T cell development. The coreceptors CD8 and CD4 may contribute to these different outcomes through interactions with class I and class II MHC, respectively, and through interactions with the tyrosine kinase p56lck (Lck) via their cytoplasmic domains. In this paper we provide evidence that an alternatively spliced form of CD8 that cannot interact with Lck (CD8 alpha') can influence the CD4 vs CD8 lineage decision. Constitutive expression of a CD8 minigene transgene that encodes both CD8 alpha and CD8 alpha' restores CD8 T cell development in CD8 alpha mutant mice, but fails to permit the development of mismatched CD4 T cells bearing class I-specific TCRs. These results indicate that CD8 alpha' favors the development of CD8-lineage T cells, perhaps by reducing Lck activity upon class I MHC recognition in the thymus.  相似文献   

4.
Previous evidence suggested that the hemopoietic-specific nuclear factor Ikaros regulates TCR signaling thresholds in mature T cells. In this study, we test the hypothesis that Ikaros also sets TCR signaling thresholds to regulate selection events and CD4 vs CD8 lineage determination in developing thymocytes. Ikaros null mice were crossed to three lines of TCR-transgenic mice, and positive selection, negative selection, and CD4 vs CD8 lineage decisions were analyzed. Mice expressing a polyclonal repertoire or a MHC class II-restricted TCR transgene exhibited enhanced positive selection toward the CD4 lineage. Moreover, in the absence of Ikaros, CD4 development can occur with decreased thresholds of TCR signaling. In addition, CD4 single-positive thymocytes were detected in MHC class I-restricted TCR-transgenic Ikaros null mice. To assess the role of Ikaros in negative selection, we analyzed deletion of T cells induced by conventional Ag or by endogenous superantigen. Surprisingly, negative selection was impaired in Ikaros null thymocytes despite evidence of high levels of TCR signal and no intrinsic defect in apoptosis ex vivo. To our knowledge, these data identify Ikaros as the first nuclear factor that plays a critical role in regulating negative selection as well as CD4 vs CD8 lineage decisions during positive selection.  相似文献   

5.
6.
7.
Immature thymocytes, which coexpress CD4 and CD8, give rise to mature CD4+CD8- and CD4-CD8+ T cells. Only those T cells that recognize self-MHC are selected to mature, a process known as positive selection. The specificity of the T cell antigen receptor (TCR) for class I or class II MHC influences the commitment to a CD4 or CD8 lineage. This may occur by a directed mechanism or by stochastic commitment followed by a selection step that allows only CD8+, class I-specific and CD4+, class II-specific cells to survive. We have generated a mouse line expressing a CD8 transgene under the control of the T cell-specific CD2 regulatory sequences. Although constitutive CD8 expression does not affect thymic selection of CD4+ cells, selection of a class I-specific TCR in the CD8 subset is substantially improved. This outcome is consistent with a model for positive selection in which selection occurs at a developmental stage in which both CD4 and CD8 are expressed, and positive selection by class I MHC generates an instructive signal that directs differentiation to a CD8 lineage.  相似文献   

8.
9.
In order to address the role of CD4 and CD8 Ag in the process of positive selection in the thymus, antibodies against these molecules, which do not result in the elimination of mature lymph node T cells, were injected in vivo. The results indicate that even long-term injection of nondepleting anti-CD4 and anti-CD8 antibodies does not cause the loss of CD4 or CD8 positive lymph node cells, but it completely blocks the development of the corresponding subpopulation of mature thymocytes. Thus, it appears that the interaction of the CD4 and CD8 accessory molecules on developing thymocytes with a ligand in the thymic environment (probably MHC Ag) is necessary for the positive selection of thymocytes into the appropriate T cell lineage.  相似文献   

10.
In this paper, we address the question whether CD4 and MHC class II expression are necessary for the development of the T helper lineage during thymocyte maturation and for activation-induced Th2 responses. To bypass the CD4-MHC class II interaction requirements for positive selection and activation, we used mice that are doubly transgenic for CD8 and for the MHC class I-restricted TCR F5. This transgene combination leads to MHC class I-dependent maturation of CD4 lineage cells. Upon activation, these CD4 lineage T cells secrete IL-4 and give help to B cells but show no cytotoxic activity. Remarkably, neither MHC class II nor CD4 expression are necessary for the generation and helper functions of these cells. This suggests that under normal conditions, coreceptor-MHC interactions are necessary to ensure the canonical combinations of coreceptor and function in developing thymocytes, but that they do not determine functional commitment. Our results also imply that expression of the CD4 gene does not influence, but is merely associated with the decision to establish the T helper program. In addition, we show that activation through TCR-MHC class I interactions can induce Th2 responses independently of CD4 and MHC class II expression.  相似文献   

11.
The level of CD8 expression can determine the outcome of thymic selection.   总被引:1,自引:0,他引:1  
E A Robey  F Ramsdell  D Kioussis  W Sha  D Loh  R Axel  B J Fowlkes 《Cell》1992,69(7):1089-1096
During thymic development, thymocytes that can recognize major histocompatability complex (MHC) molecules on thymic epithelial cells are selected to survive and mature (positive selection), whereas thymocytes that recognize MHC on hematopoietic cells are destroyed (negative selection). It is not known how MHC recognition can mediate both death and survival. One model to explain this paradox proposes that thymocytes whose T cell antigen receptors (TCRs) recognize MHC with high affinity are eliminated by negative selection, whereas low affinity TCR-MHC interactions are sufficient to mediate positive selection. Here we report that, while the expression of a 2C TCR transgene leads to positive selection of thymocytes in H-2b mice, expression of both a CD8 transgene and a 2C TCR transgene causes negative selection. This observation indicates that quantitative differences in TCR-MHC recognition are a critical determinant of T cell fate, a finding predicted by the affinity model for thymic selection.  相似文献   

12.
The multiplicity of Notch receptors raises the question of the contribution of specific isoforms to T-cell development. Notch3 is expressed in CD4(-)8(-) thymocytes and is down-regulated across the CD4(-)8(-) to CD4(+)8(+) transition, controlled by pre-T-cell receptor signaling. To determine the effects of Notch3 on thymocyte development, transgenic mice were generated, expressing lck promoter-driven intracellular Notch3. Thymuses of young transgenics showed an increased number of thymocytes, particularly late CD4(-)8(-) cells, a failure to down-regulate CD25 in post-CD4(-)8(-) subsets and sustained activity of NF-kappaB. Subsequently, aggressive multicentric T-cell lymphomas developed with high penetrance. Tumors sustained characteristics of immature thymocytes, including expression of CD25, pTalpha and activated NF-kappaB via IKKalpha-dependent degradation of IkappaBalpha and enhancement of NF-kappaB-dependent anti-apoptotic and proliferative pathways. Together, these data identify activated Notch3 as a link between signals leading to NF-kappaB activation and T-cell tumorigenesis. The phenotypes of pre-malignant thymocytes and of lymphomas indicate a novel and particular role for Notch3 in co-ordinating growth and differentiation of thymocytes, across the pre-T/T cell transition, consistent with the normal expression pattern of Notch3.  相似文献   

13.
Editing autoreactive TCR enables efficient positive selection   总被引:2,自引:0,他引:2  
Allelic exclusion is inefficient at the TCRalpha locus, allowing a sizeable portion of T cells to carry two functional TCRs. The potential danger of dual TCR expression is a rescue of autoreactive TCRs during selection in the thymus and subsequent development of autoimmunity. In this study, we examine the reason(s) for replacing an autoreactive TCR and for allowing the survival of cells carrying two TCRs. We compared development of TCR transgenic CD4(+)CD8(-) thymocytes in the presence or absence of MHC class II autoantigen that does not induce deletion of thymocytes. Contrary to the expected negative effect of the presence of autoantigen, approximately 100% more CD4(+)CD8(-) thymocytes were found in the presence of MHC class II autoantigen than in the neutral background. A further increase in the strength of autoantigenic signal via expression of a human CD4 transgene led to an additional increase in the numbers of CD4(+)CD8(-) thymocytes. Thus, editing autoreactive TCR results in more efficient positive selection, and this may be both a reason and a reward for risking autoimmunity.  相似文献   

14.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

15.
This study uses two independent genetic strategies to explore the requirement for phosphoinositide-dependent kinase-1 (PDK1) in the development of mature T cell populations from CD4/CD8 double-positive thymocytes. The data show that CD4/CD8 double-positive thymocytes that do not express PDK1 or express a catalytically inactive PDK1 mutant fail to produce mature invariant Vα14 NKT cells but can differentiate to conventional CD4, CD8, or regulatory T cell subsets in the thymus. The PDK1 requirement for Vα14 NKT cell development reflects that these cells require the PDK1 substrate protein kinase B to meet the metabolic demands for proliferative expansion in response to IL-15 or AgR stimulation. There is also constitutive PDK1 signaling in conventional α/β T cells that is not required for lineage commitment of these cells but fine-tunes the expression of coreceptors and adhesion molecules. Also, although PDK1 is dispensable for thymic development of conventional α/β T cells, peripheral cells are reduced substantially. This reflects a PDK1 requirement for lymphopenia-induced proliferation, a process necessary for initial population of the peripheral T cell niche in neonatal mice. PDK1 is thus indispensable for T cell developmental programs, but the timing of the PDK1 requirement is unique to different T cell subpopulations.  相似文献   

16.
In the thymus, phenotypically and functionally mature single positive cells are generated from immature CD4+8+ precursors by a process known as positive selection. Although this event is known to involve alphabetaTCR ligation by peptide/MHC complexes expressed on thymic stromal cells, it is clear that positive selection is a multistage process involving transition through an intermediate CD4+8+69+ phase as well as subsequent postselection phases. By analyzing the development of preselection CD4+8+69- and intermediate CD4+8+69+ thymocytes in the presence of MHC class I-deficient, MHC class II-deficient, and MHC double-deficient thymic stromal cells, we investigated the role of MHC molecules at three distinct points during positive selection. Although the initiation of positive selection is critically dependent upon MHC interactions, we find the that later stages of maturation, involving the differentiation of CD4+8- and CD4-8+ cells from CD4+8+69+ thymocytes, occur in the absence of MHC molecules. Moreover, an analysis of the postselection proliferation of newly generated CD4+8- and CD4-8+ thymocytes shows that this also occurs independently of MHC molecules. Thus, our data provide direct evidence that, although positive selection is a multistage process initiated by TCR-MHC interactions, continuation of this process and subsequent postselection events are independent of ongoing engagement of the TCR.  相似文献   

17.
Selection of immature CD4CD8 double-positive (DP) thymocytes for CD4 or CD8-lineage commitment is controlled by the interaction of the TCR with stromal cell-expressed peptide/MHC. We show that thymocyte-intrinsic genes influence the pattern of expression of a MHC class I-restricted transgenic (tg) TCR so that in DBA/2 mice, DP thymocytes with a characteristically high expression of tg TCR, infrequently transit to CD8 single-positive thymocytes. In contrast, in B10.D2 mice, the same tg TCR is expressed at lower levels on a subpopulation of DP thymocytes that more frequently transit to CD8 single-positive thymocytes. These characteristics were not influenced by thymic stromal components that control positive selection. Radiation chimeras reconstituted with a mixture of BM from tg TCR mice of the two genetic backgrounds revealed that the relative frequency of transit to the CD8 lineage remained thymocyte-intrinsic. Identifying the gene products whose polymorphism controls CD8 T cell development may shed new light on the mechanisms controlling T cell commitment/selection in mice other than the most studied "C57BL/6"-based strains.  相似文献   

18.
It is generally accepted that the avidity of TCR for self Ag/MHC determines the fate of immature thymocytes. However, the contribution of the quantity of TCR signal to T cell selection has not been well established, particularly in vivo. To address this issue, we analyzed DO-TCR transgenic CD3zeta-deficient (DO-Tg/zetaKO) mice in which T cells have a reduced TCR on the cell surface. In DO-Tg/zetaKO mice, very few CD4 single positive (SP) thymocytes developed, indicating that the decrease in TCR signaling resulted in a failure of positive selection of DO-Tg thymocytes. Administration of the peptide Ag to DO-Tg/zetaKO mice resulted in the generation of functional CD4 SP mature thymocytes in a dose-dependent manner, and, unexpectedly, DO-Tg CD8 SP cells emerged at lower doses of Ag. TCR signal-dependent, sequential commitment from CD8(+) SP to CD4(+) SP was also shown in a class I-restricted TCR-Tg system. These in vivo analyses demonstrate that the quantity of TCR signal directly determines positive and negative selection, and further suggest that weak signal directs positively selected T cells to CD8 lineage and stronger signal to CD4 lineage.  相似文献   

19.
This study has investigated the cross-reactivity upon thymic selection of thymocytes expressing transgenic TCR derived from a murine CD8+ CTL clone. The Idhigh+ cells in this transgenic mouse had been previously shown to mature through positive selection by class I MHC, Dq or Lq molecule. By investigating on various strains, we found that the transgenic TCR cross-reacts with three different MHCs, resulting in positive or negative selection. Interestingly, in the TCR-transgenic mice of H-2q background, mature Idhigh+ T cells appeared among both CD4+ and CD8+ subsets in periphery, even in the absence of RAG-2 gene. When examined on beta2-microglobulin-/- background, CD4+, but not CD8+, Idhigh+ T cells developed, suggesting that maturation of CD8+ and CD4+ Idhigh+ cells was MHC class I (Dq/Lq) and class II (I-Aq) dependent, respectively. These results indicated that this TCR-transgenic mouse of H-2q background contains both classes of selecting MHC ligands for the transgenic TCR simultaneously. Further genetic analyses altering the gene dosage and combinations of selecting MHCs suggested novel asymmetric effects of class I and class II MHC on the positive selection of thymocytes. Implications of these observations in CD4+/CD8+ lineage commitment are discussed.  相似文献   

20.
The Tec family tyrosine kinase Itk is critical for efficient signaling downstream of the TCR. Biochemically, Itk is directly phosphorylated and activated by Lck. Subsequently, Itk activates phospholipase C-gamma1, leading to calcium mobilization and extracellular signal-regulated kinase/mitogen-activated protein kinase activation. These observations suggested that Itk might play an important role in positive selection and CD4/CD8 lineage commitment during T cell development in the thymus. To test this, we crossed Itk-deficient mice to three lines of TCR transgenics and analyzed progeny on three different MHC backgrounds. Analysis of these mice revealed that fewer TCR transgenic T cells develop in the absence of Itk. In addition, examination of multiple T cell development markers indicates that multiple stages of positive selection are affected by the absence of Itk, but the T cells that do develop appear normal. In contrast to the defects in positive selection, CD4/CD8 lineage commitment seems to be intact in all the TCR transgenic itk(-/-) lines tested. Overall, these data indicate that altering TCR signals by the removal of Itk does not affect the appropriate differentiation of thymocytes based on their MHC specificity, but does impact the efficiency with which thymocytes complete their maturation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号