首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor cells undergo epithelial-to-mesenchymal transition (EMT) to convert from a benign to a malignant phenotype. Our recent focus has been signaling pathways that promote EMT in response to collagen. We have shown that human pancreatic cancer cells respond to collagen by up-regulating N-cadherin, which promotes tumor growth, invasion, and metastasis. Initial characterization showed that knocking down c-Jun NH2-terminal kinase prevented N-cadherin up-regulation and limited tumor growth and invasion in a mouse model for pancreatic cancer. The current study was designed to understand the pathway from collagen to N-cadherin up-regulation. Initiation of the signal requires two collagen receptors, alpha2beta1 integrin and discoidin domain receptor (DDR) 1. Each receptor propagates signals through separate pathways that converge to up-regulate N-cadherin. Focal adhesion kinase (FAK)-related protein tyrosine kinase (Pyk2) is downstream of DDR1, whereas FAK is downstream of alpha2beta1 integrin. Both receptor complexes rely on the p130 Crk-associated substrate scaffold. Interestingly, Rap1, but not Rho family guanosine triphosphatases, is required for the response to collagen I.  相似文献   

2.
Connective tissue growth factor (CTGF) plays an important role in lung fibrosis. In this study, we investigated the role of Rac1, mixed-lineage kinase 3 (MLK3), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CTGF-induced collagen I expression in human lung fibroblasts. CTGF caused concentration- and time-dependent increases in collagen I expression. CTGF-induced collagen I expression was inhibited by the dominant negative mutant (DN) of Rac1 (RacN17), MLK3DN, MLK3 inhibitor (K252a), JNK1DN, JNK2DN, a JNK inhibitor (SP600125), and an AP-1 inhibitor (curcumin). Treatment of cells with CTGF caused activation of Rac1, MLK3, JNK, and AP-1. The CTGF-induced increase in MLK3 phosphorylation was inhibited by RacN17. Treatment with RacN17 and the MLK3DN inhibited CTGF-induced JNK phosphorylation. CTGF caused increases in c-Jun phosphorylation and the recruitment of c-Jun and c-Fos to the collagen I promoter. Furthermore, stimulation of cells with the CTGF resulted in increases in AP-1-luciferase activity; this effect was inhibited by Rac1N17, MLK3DN, JNK1DN, and JNK2DN. Moreover, CTGF-induced α-smooth muscle actin (α-SMA) expression was inhibited by the procollagen I small interfering RNA (siRNA). These results suggest for the first time that CTGF acting through Rac1 activates the MLK3/JNK signaling pathway, which in turn initiates AP-1 activation and recruitment of c-Jun and c-Fos to the collagen I promoter and ultimately induces collagen I expression in human lung fibroblasts.  相似文献   

3.
4.
5.
Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling   总被引:5,自引:0,他引:5  
Gelsolin is a widely distributed actin binding protein involved in controlling cell morphology, motility, signaling and apoptosis. The role of gelsolin in tumor progression, however, remains poorly understood. Here we show that expression of green fluorescent protein (GFP)-tagged gelsolin in MDCK-AZ, MDCKtsSrc or HEK293T cells promotes invasion into collagen type I. In organ culture assays, MDCK cells expressing gelsolin-GFP invaded pre-cultured chick heart fragments. Gelsolin expression inhibited E-cadherin-mediated cell aggregation but did not disrupt the E-cadherin-catenin complex. Co-expression of dominant-negative Rac1N17, but not RhoAN19 or Cdc42N17, counteracted gelsolin-induced invasion, suggesting a requirement for Rac1 activity. Increased ARF6, PLD or PIP5K 1alpha activity canceled out gelsolin-induced invasion. Furthermore, we found that invasion induced by gelsolin is dependent on Ras activity, acting through the PI3K-Rac pathway via the Ras guanine nucleotide exchange factor Sos-1. These findings establish a connection between gelsolin and the Ras oncogenic signaling pathway.  相似文献   

6.
Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-beta induced apoptosis and the loss of mitochondrial membrane potential (delta psi m) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-beta-induced loss of delta psi m, suggesting that the interaction of IFN-beta-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-beta induced a sustained activation of c-Jun NH2-terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-beta-induced apoptosis and loss of delta psi m were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-beta-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-beta but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-beta-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein.  相似文献   

7.
8.
9.
The c-Jun N-terminal kinases (JNKs) are encoded by three genes that yield 10 isoforms through alternative mRNA splicing. The roles of each JNK isoform in the many putative biological responses where the JNK pathway is activated are still unclear. To examine the cellular responses mediated by different JNK isoforms, gain-of-function JNK1 polypeptides were generated by fusing the upstream mitogen-activated protein kinase kinase, MKK7, with p46JNK1alpha or p46JNK1beta. The MKK7-JNK fusion proteins, which exhibited constitutive activity in 293T cells, were stably expressed in Swiss 3T3 fibroblasts using retrovirus-mediated gene transfer. Swiss 3T3 cells expressing either of the MKK7-JNK polypeptides were equally sensitized to induction of cell death following serum withdrawal. To search for other cellular responses that may be selectively regulated by the JNK1 isoforms, the gene expression profiles of Swiss 3T3 cells expressing MKK7-JNK1alpha or MKK7-JNK1beta were compared with empty vector-transfected control cells. Affymetrix Genechips identified 46 genes for which expression was increased in MKK7-JNK-expressing cells relative to vector control cells. Twenty genes including those for c-Jun, MKP-7, interluekin-1 receptor family member ST2L/ST2, and c-Jun-binding protein were induced similarly by MKK7-JNK1alpha and MKK7-JNK1beta proteins, whereas 13 genes were selectively increased by MKK7-JNK1alpha and 13 genes were selectively increased by MKK7-JNK1beta. The set of genes selectively induced by MKK7-JNK1beta included a number of known interferon-stimulated genes (ISG12, ISG15, IGTP, and GTPI). Consistent with these gene expression changes, Swiss 3T3 cells expressing MKK7-JNK1beta exhibited increased resistance to vesicular stomatitis virus-induced cell death. These findings reveal evidence for JNK isoform-selective gene regulation and support a role for distinct JNK isoforms in specific cellular responses.  相似文献   

10.
I Timokhina  H Kissel  G Stella    P Besmer 《The EMBO journal》1998,17(21):6250-6262
The receptor tyrosine kinase Kit plays critical roles in hematopoiesis, gametogenesis and melanogenesis. In mast cells, Kit receptor activation mediates several cellular responses including cell proliferation and suppression of apoptosis induced by growth factor deprivation and gamma-irradiation. Kit receptor functions are mediated by kinase activation, receptor autophosphorylation and association with various signaling molecules. We have investigated the role of phosphatidylinositol 3'-kinase (PI 3-kinase) and Src kinases in Kit-mediated cell proliferation and suppression of apoptosis induced both by factor deprivation and irradiation in bone marrow-derived mast cells (BMMC). Analysis of Kit-/- BMMC expressing mutant Kit receptors and the use of pharmacological inhibitors revealed that both signaling pathways contribute to these Kit-mediated responses and that elimination of both pathways abolishes them. We demonstrate that the PI 3-kinase and Src kinase signaling pathways converge to activate Rac1 and JNK. Analysis of BMMC expressing wild-type and dominant-negative mutant forms of Rac1 and JNK revealed that the Rac1/JNK pathway is critical for Kit ligand (KL)-induced proliferation of mast cells but not for suppression of apoptosis. In addition, KL was shown to inhibit sustained activation of JNK induced by gamma-irradiation and concomitant irradiation-induced apoptosis.  相似文献   

11.
Bovine type I collagen (BIC), which is widely used as a fibrous extracellular matrix component in cell culture models, inhibits the progression of melanoma cell cycle via p27 up-regulation. BIC also induces nitric oxide synthase in macrophages through JunB/AP-1 and NF-kappaB activation. Given the previous observations, this study investigates the effect of BIC on the cell cycle progression and regulatory function of Raw264.7 macrophage cells and the responsible signaling pathways. Cell cycle analysis revealed that BIC completely suppressed proliferation of Raw264.7 cells with inhibition of the percentage of cells in the S phase and the reciprocal decrease in the G0/G1 phase. DNA synthesis was also inhibited by BIC, as evidenced by a decrease in the cellular incorporation of [3H]thymidine. The G1/S arrest induced by BIC was reversed by chemical inhibition of phosphatidylinositol 3-kinase (PI3-kinase) or overexpression of the p85 subunit of PI3-kinase. Either PD98059 or stable transfection with mitogen-activated protein kinase kinase-1 [MKK1(-)] or c-Jun N-terminal kinase 1 [JNK1(-)] also released the cell cycle arrest. Immunoblot analyses revealed that the levels of cyclins D1, A and B1 were partly or completely down-regulated by BIC, but cyclin E, p21 and p27 were minimally changed. Chemical inhibition and dominant negative mutant overexpression experiments revealed that either PI3-kinase inhibition or JNK1(-) transfection prevented the decreases in cyclin D1, A and B1 by BIC, indicating that the PI3-kinase and JNK1 pathways were associated with disruption of the cyclins. The pathway involving MKK1-extracellular signal-regulated kinase-1/2 (ERK1/2) was responsible for the suppression of cyclin A and B1, but not that of cyclin D1. The present study showed that BIC inhibited proliferation of Raw264.7 cells and that the pathways involving PI3-kinase and mitogen-activated protein kinases regulate the cell cycle arrest.  相似文献   

12.
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-induced apoptosis. In this study, we showed that TNF-alpha/CHX-induced ROS production and hydrogen peroxide (H(2)O(2))-induced oxidative stress increased apoptosis. Inhibition of Rac1 by a specific inhibitor NSC23766 prevented TNF-alpha-induced ROS production. The antioxidant, N-acetylcysteine (NAC), or rotenone (Rot), the mitochondrial electron transport chain inhibitor, attenuated mitochondrial ROS production and apoptosis. Rot also prevented JNK1/2 activation during apoptosis. Inhibition of Rac1 by expression of dominant negative Rac1 decreased TNF-alpha-induced mitochondrial ROS production. Moreover, TNF-alpha-induced cytosolic ROS production was inhibited by Rac1 inhibition, diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase), and NAC. In addition, DPI inhibited TNF-alpha-induced apoptosis as judged by morphological changes, DNA fragmentation, and JNK1/2 activation. Mitochondrial membrane potential change is Rac1 or cytosolic ROS dependent. Lastly, all ROS inhibitors inhibited caspase-3 activity. Thus these results indicate that TNF-alpha-induced apoptosis requires Rac1-dependent ROS production in intestinal epithelial cells.  相似文献   

13.
Numerous studies have demonstrated the neuroprotective effects of estrogen in experimental cerebral ischemia. To investigate molecular mechanisms of estrogen neuroprotection in global ischemia, immunoblotting, immunohistochemistry and Nissel-staining analysis were used. Our results showed that chronic pretreatment with beta-estradiol 3-benzoate (E2) enhanced Akt1 activation and reduced the activation of mixed-lineage kinase 3 (MLK3), mitogen-activated protein kinase kinase 4/7 (MKK4/7), and c-Jun N-terminal kinase 1/2 (JNK1/2) in the hippocampal CA1 subfield during reperfusion after 15 min of global ischemia. In addition, E2 reduced downstream JNK nuclear and non-nuclear components, c-Jun and Bcl-2 phosphorylation and Fas ligand protein expression induced by ischemia/reperfusion. Administration of phosphoinositide 3-kinase (PI3K) inhibitor LY 294,002 prevented both activation of Akt1 and inhibition of MLK3, MKK4/7 and JNK1/2. The interaction between ERalpha and the p85 subunit of PI3K was also examined. E2 and antiestrogen ICI 182,780 promoted and prevented this interaction, respectively. Furthermore, ICI 182,780 blocked both the activation of Akt1 and the inhibition of MLK3, MKK4/7 and JNK1/2. Photomicrographs of cresyl violet-stained brain sections showed that E2 reduced CA1 neuron loss after 5 days of reperfusion, which was abolished by ICI 182,780 and LY 294,002. Our data indicate that in response to estrogen, ERalpha interacts with PI3K to activate Akt1, which may inhibit the MLK3-MKK4/7-JNK1/2 pathway to protect hippocampal CA1 neurons against global cerebral ischemia in male rats.  相似文献   

14.
15.
The aggregation of chondroprogenitor mesenchymal cells into precartilage condensation represents one of the earliest events in chondrogenesis. N-cadherin is a key cell adhesion molecule implicated in chondrogenic differentiation. Recently, ADAM10-mediated cleavage of N-cadherin has been reported to play an important role in cell adhesion, migration, development and signaling. However, the significance of N-cadherin cleavage in chondrocyte differentiation has not been determined. In the present study, we found that the protein turnover of N-cadherin is accelerated during the early phase of chondrogenic differentiation in ATDC5 cells. Therefore, we generated the subclones of ATDC5 cells overexpressing wild-type N-cadherin, and two types of subclones overexpressing a cleavage-defective N-cadherin mutant, and examined the response of these cells to insulin stimulation. The ATDC5 cells overexpressing cleavage-defective mutants severely prevented the formation of cartilage aggregates, proteoglycan production and the induction of chondrocyte marker gene expression, such as type II collagen, aggrecan and type X collagen. These results suggested that the cleavage of N-cadherin is essential for chondrocyte differentiation.  相似文献   

16.
Hypertension can increase mechanical stretch on the vessel wall, an important stimulus that induces collagen remodeling. Prolyl-4-hydroxylaseα1 (P4Hα1) and matrix metalloproteinases (MMPs) are essential for collagen synthesis and degradation. However, the effect of mechanical strain and collagen synthesis remains largely unknown. This study aimed to identify the effect of stretch on MMPs and P4Hα1 and the involved signaling pathways. Human aortic smooth muscle cells (HASMCs) were stimulated with mechanical stretch (0, 10% and 18% strain), and production of P4Hα1 as well as production and gelatinolytic activity of MMP-2 was force-dependently increased. Mechanical stretch at 18% also increased the expression of type I and III collagen and the phosphorylation of Akt, p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). MMP-2 production and activity enhanced by 18% stretch were inhibited by the PI3K/Akt inhibitor LY294002. Blockade of p38 MAPK or JNK inhibited the promoting effect of stretch on P4Hα1. The in vivo model of aortic banding showed increased protein levels of MMP-2, P4Hα1 and collagen I and III in the aorta. Thus, mechanical stretch increased MMP-2 and P4Hα1 expression in HASMCs via AKT-P38 MAPK-JNK signaling, thereby inducing vascular remodeling.  相似文献   

17.
18.
The multilineage differentiation potential of adult tissue-derived mesenchymal progenitor cells (MPCs), such as those from bone marrow and trabecular bone, makes them a useful model to investigate mechanisms regulating tissue development and regeneration, such as cartilage. Treatment with transforming growth factor-beta (TGF-beta) superfamily members is a key requirement for the in vitro chondrogenic differentiation of MPCs. Intracellular signaling cascades, particularly those involving the mitogen-activated protein (MAP) kinases, p38, ERK-1, and JNK, have been shown to be activated by TGF-betas in promoting cartilage-specific gene expression. MPC chondrogenesis in vitro also requires high cell seeding density, reminiscent of the cellular condensation requirements for embryonic mesenchymal chondrogenesis, suggesting common chondro-regulatory mechanisms. Prompted by recent findings of the crucial role of the cell adhesion protein, N-cadherin, and Wnt signaling in condensation and chondrogenesis, we have examined here their involvement, as well as MAP kinase signaling, in TGF-beta1-induced chondrogenesis of trabecular bone-derived MPCs. Our results showed that TGF-beta1 treatment initiates and maintains chondrogenesis of MPCs through the differential chondro-stimulatory activities of p38, ERK-1, and to a lesser extent, JNK. This regulation of MPC chondrogenic differentiation by the MAP kinases involves the modulation of N-cadherin expression levels, thereby likely controlling condensation-like cell-cell interaction and progression to chondrogenic differentiation, by the sequential up-regulation and progressive down-regulation of N-cadherin. TGF-beta1-mediated MAP kinase activation also controls WNT-7A gene expression and Wnt-mediated signaling through the intracellular beta-catenin-TCF pathway, which likely regulates N-cadherin expression and subsequent N-cadherin-mediated cell-adhesion complexes during the early steps of MPC chondrogenesis.  相似文献   

19.
Adenovirus (Ad) endocytosis via αv integrins requires activation of the lipid kinase phosphatidylinositol-3-OH kinase (PI3K). Previous studies have linked PI3K activity to both the Ras and Rho signaling cascades, each of which has the capacity to alter the host cell actin cytoskeleton. Ad interaction with cells also stimulates reorganization of cortical actin filaments and the formation of membrane ruffles (lamellipodia). We demonstrate here that members of the Rho family of small GTP binding proteins, Rac and CDC42, act downstream of PI3K to promote Ad endocytosis. Ad internalization was significantly reduced in cells treated with Clostridium difficile toxin B and in cells expressing a dominant-negative Rac or CDC42 but not a H-Ras protein. Viral endocytosis was also inhibited by cytochalasin D as well as by expression of effector domain mutants of Rac or CDC42 that impair cytoskeletal function but not JNK/MAP kinase pathway activation. Thus, Ad endocytosis requires assembly of the actin cytoskeleton, an event initiated by activation of PI3K and, subsequently, Rac and CDC42.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号