首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nestin expression during mouse eye and lens development   总被引:3,自引:0,他引:3  
  相似文献   

2.
3.
4.
5.
Differential expression of keratin genes during mouse development   总被引:1,自引:0,他引:1  
Suprabasal layers of the newborn mouse epidermis contain two mRNAs of 2.0 and 2.4 kb which are translated into keratins of 59 and 67 kDa, respectively. To study their expression during development, cDNA sequences corresponding to the 2.0- and the 2.4-kb mRNAs were cloned, characterized by hybridization selection assay, and used as probes to detect keratin sequences in polyadenylated RNA from Day 11, 13, 15, and 17 embryos. In RNA from Day 11 of gestation, two RNAs of 2.8 and 1.8 kb were identified. They were found to have homologies with both epidermal RNAs, suggesting that they are coding for proteins of the keratin family. These two sequences were not detected in sample of later stages. RNAs comigrating with the two epidermal keratin RNAs were identified only in Day 15 and 17 embryos indicating that their expression was induced between Day 13 and 15. Finally, the localization of the 59-kDa keratin mRNA was examined by in situ hybridization. The spinous and granulous cell layers were found to be heavily covered with grains while other regions of the tissue sections were unlabeled. All these results support the hypothesis of a sequential expression of keratins during differentiation of epidermal cells and suggest that proteins related to the keratins expressed specifically in keratinizing cells are expressed earlier during development.  相似文献   

6.
7.
Protein S, the most abundant protein synthesized during development of the fruiting bacterium Myxococcus xanthus, is coded by two highly homologous genes called protein S gene 1 (ops) and protein S gene 2 (tps). The expression of these genes was studied with fusions of the protein S genes to the lacZ gene of Escherichia coli. The gene fusions were constructed so that expression of beta-galactosidase activity was dependent on protein S gene regulatory sequences. Both the gene 1-lacZ fusion and the gene 2-lacZ fusion were expressed exclusively during fruiting body formation (development) in M. xanthus. However, distinct patterns of induction of fusion protein activity were observed for the two genes. Gene 2 fusion activity was detected early during development on an agar surface and could also be observed during nutritional downshift in dispersed liquid culture. Gene 1 fusion activity was not detected until much later in development and was not observed after downshift in liquid culture. The time of induction of gene 1 fusion activity was correlated with the onset of sporulation, and most of the activity was spore associated. This gene fusion was expressed during glycerol-induced sporulation when gene 2 fusion activity could not be detected. The protein S genes appear to be members of distinct regulatory classes of developmental genes in M. xanthus.  相似文献   

8.
We have identified the cDNAs of two new zebrafish preprosomatostatins, PPSS1 and PPSS3, in addition to the previously cloned PPSS2 (Argenton et al., 1999). PPSS1 is the orthologue of mammalian PPSSs, with a conserved C-terminal SS-14 sequence, PPSS2 is a divergent SS precursor and PPSS3 is a cortistatin-like prohormone. Using whole-mount in situ hybridisation, we have analysed the expression of PPSS1 and PPSS2 in zebrafish embryos up to 5 days post fertilisation. PPSS1 was expressed in the developing pancreas and central nervous system (CNS), whereas PPSS2 expression was exclusively pancreatic. In the CNS, PPSS1 was detected in several areas, in particular in the vagal motor nucleus and in cells that pioneer the tract of the postoptic commissure. PPSS1 was also expressed transiently in the telencephalon and spinal motor neurons. In all areas but the telencephalon PPSS1 was coexpressed with islet-1.  相似文献   

9.
Jeong HY  Cho GB  Han KY  Kim J  Han DM  Jahng KY  Chae KS 《Gene》2001,262(1-2):215-219
The rpl3 gene and the rpl37 gene for Aspergillus nidulans ribosomal protein L3 (RPL3) and RPL37, which were identified as located on chromosome I and chromosome III, respectively, were isolated from chromosome-specific cosmid libraries. The nucleotide sequences of both of the rpl3 gene and the rpl37 gene identified the ORFs of 392 amino acids and 92 amino acids, respectively. Both of the two genes were present in a single copy. The expression of both genes together with two other house-keeping genes, the rps16 gene for RPS16 and the gene for gamma-actin, was analyzed during sexual development. All four genes showed nearly identical expression patterns in that each gene expression reached its maximum after 2 h, decreased thereafter, and increased again after 30-40 h of induction of sexual development.  相似文献   

10.
11.
α-Crystallin, a major component of the eye lens cytoplasm, is a large multimer formed from two members of the small heat shock protein (sHsp) family. Inherited crystallin mutations are a common cause of childhood cataract, whereas miscellaneous changes to the long-lived crystallins cause age-related cataract, the most common cause of blindness worldwide. Newly formed eye lens cells use proteostasis to deal with the consequences of mutations, whereas mature lens cells, devoid of the ATP-driven folding and degradation machines, are hypothesized to have the α-crystallin "holdase" chaperone function to prevent protein aggregation. We discuss the impact of truncating and missense mutations on α-crystallin, based on recent progress towards determining sHsp 3D structure. Dominant missense mutations to the "α-crystallin domain" of αA- (HSPB4) or αB-crystallin (HSPB5) occur on residues predicted to facilitate domain dynamics. αB-Crystallin is also expressed in striated muscle and mutations cause myopathy. The impact on these cellular cytoplasms is compared where sHsp multimer partners and metabolic constraints are different. Selected inherited mutations of the lens β- and γ-crystallins are considered in the context of their possible dependence on the "holdase" chaperone function of α-crystallin. Looking at discrete changes to specific crystallin polypeptide chains that can function as chaperone or substrate provide insights into the workings of a cytoplasmic proteostatic system. These observations provide a framework for validating the function of α-crystallin as a chaperone, or as a lens space filler adapted from a chaperone function. Understanding the mechanistic role of α-crystallins will aid progress in research into age-related cataract and adult-onset myopathy. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.  相似文献   

12.
Water soluble proteins (WSPs) in Sus scrofa lenses from pigs in different developmental stages: (young (GI), young adult (GII), and middle-aged (GIII)) were separated using GF-HPLC, yielding fractions of different molecular weights. Non-tryptophan (345/420 nm) and tryptophan (280/345 nm) fluorescence was measured in these fractions. Relative non-tryptophan fluorescence increased with age at a rate directly correlated to the molecular weight of aggregates forming the different chromatographic fractions, while tryptophan fluorescence tended to decrease. The crystallins constituting each fraction were separated using 2D-electrophoresis and after development with Coomassie blue they were identified using MS-TOF. Also, the protein content of each spot was quantified by subsequent scanning and integration. The proportions of unchanged crystallins characteristically changed with age in chromatographic fractions of different molecular weights. Thus it was possible to relate these changes with those occurring in the fluorescent properties and molecular weight of supramolecular structures.  相似文献   

13.
Recent studies indicate a role for Wnt signalling in regulating lens cell differentiation (Stump et al., 2003). To further our understanding of this, we investigated the expression patterns of Wnts and Wnt signalling regulators, the Dickkopfs (Dkks), during murine lens development. In situ hybridisation showed that Wnt5a, Wnt5b, Wnt7a, Wnt7b, Wnt8a and Wnt8b genes are expressed throughout the early lens primordia. At embryonic day 14.5 (E14.5), Wnt5a, Wnt5b, Wnt7a, Wnt8a and Wnt8b are reduced in the primary fibres, whereas Wnt7b remains strongly expressed. This trend persists up to E15.5. At later embryonic stages, Wnt expression is predominantly localised to the epithelium and elongating cells at the lens equator. As fibre differentiation progresses, Wnt expression becomes undetectable in the cells of the lens cortex. The one exception is Wnt7b, which continues to be weakly expressed in cortical fibres. This pattern of expression continues through to early postnatal stages. However, by postnatal day 21 (P21), expression of all Wnts is distinctly weaker in the central lens epithelium compared with the equatorial region. This is most notable for Wnt5a, which is barely detectable in the central lens epithelium at P21. Dkk1, Dkk2 and Dkk3 have similar patterns of expression to each other and to the majority of the Wnts during lens development. This study shows that multiple Wnt and Dkk genes are expressed during lens development. Expression is predominantly in the epithelial compartment but is also associated, particularly in the case of Wnt7b, with early events in fibre differentiation.  相似文献   

14.
δ-Crystallin is a major soluble protein of the avian and reptilian lens, and its expression is highly tissue-specific in development. In order to understand regulatory mechanisms for tissue-specific expression of δ-crystallin gene, several experimental systems were established in a heterologous combination of the chicken gene and mouse cells. The expression was ectopic in various cell types differentiated in teratomas derived from mouse teratocarcinoma or embryonic stem cells which were transformed to carry the chicken δ-crystallin genes. Cells of the same transformed lines of embryonic stem cells expressed the chicken gene homotopically in chimeric embryos produced by injecting them into the blastocysts. The homotopic expression also occurred in experimental systems consisting of the heterologous introduction of the gene (1) into various mouse cells in primary cultures, and (2) into male pronuclei of mouse fertilized eggs.  相似文献   

15.
Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.  相似文献   

16.
17.
Crystallins are the major structural proteins in the vertebrate eye lens that contribute to lens transparency. Although cataract, including diabetic cataract, is thought to be a result of the accumulation of crystallins with various modifications, the effect of hyperglycemia on status of crystallin levels has not been investigated. This study evaluated the effect of chronic hyperglycemia on crystallin levels in diabetic cataractous rat lens. Diabetes was induced in rats by injecting streptozotocin and maintained on hyperglycemia for a period of 10 weeks. At the end, levels of α-, β-, γ-crystallins and phosphoforms of αB-crystallins (αBC) were analyzed by immunoblotting. Further, solubility of crystallins and phosphoforms of αBC was analyzed by detergent soluble assay. Chronic diabetes significantly decreased the protein levels of α-, β- and αA-crystallins (αAC) in both soluble and insoluble fraction of lens. Whereas γ-crystallin levels were decreased and αBC levels were increased in lens soluble fraction with no change in insoluble fraction in diabetic rat lens. Although, diabetes activated the p38MAPK signaling cascade by increasing the p-p38MAPK in lens, the phosphoforms of αBC were decreased in soluble fraction with a concomitant increase in insoluble fraction of diabetic lens when compared to the controls. Moreover, diabetes strongly enhances the degradation of crystallins and phosphoforms of αBC in lens. Taken together, the decreased levels of crystallins and insolubilization of phosphoforms of αBC under chronic hyperglycemia could be one of the underlying factors in the development of diabetic cataract.  相似文献   

18.
Purinergic signaling has broad physiological significance to the hearing organ, involving signal transduction via ionotropic P2X receptors and metabotropic G-protein-coupled P2Y and P1 (adenosine), alongside conversion of nucleotides and nucleosides by ecto-nucleotidases and ecto-nucleoside diphosphokinase. In addition, ATP release is modulated by acoustic overstimulation or stress and involves feedback regulation. Many of these principal elements of the purinergic signaling complex have been well characterized in the cochlea, while the characterization of P2Y receptor expression is emerging. The present study used immunohistochemistry to evaluate the expression of five P2Y receptors, P2Y1, P2Y2, P2Y4, P2Y6, and P2Y12, during development of the rat cochlea. Commencing in the late embryonic period, the P2Y receptors studied were found in the cells lining the cochlear partition, associated with establishment of the electrochemical environment which provides the driving force for sound transduction. In addition, early postnatal P2Y2 and P2Y4 protein expression in the greater epithelial ridge, part of the developing hearing organ, supports the view that initiation and regulation of spontaneous activity in the hair cells prior to hearing onset is mediated by purinergic signaling. Sub-cellular compartmentalization of P2Y receptor expression in sensory hair cells, and diversity of receptor expression in the spiral ganglion neurons and their satellite cells, indicates roles for P2Y receptor-mediated Ca2+-signaling in sound transduction and auditory neuron excitability. Overall, the dynamics of P2Y receptor expression during development of the cochlea complement the other elements of the purinergic signaling complex and reinforce the significance of extracellular nucleotide and nucleoside signaling to hearing.  相似文献   

19.
20.
为了更清楚地了解斑玉蕈菌丝成熟、原基形成和子实体发育的过程,本研究对不同菌丝培养时期的栽培瓶进行出菇实验,并对其不同培养时期和生长发育关键时期的信息素通路基因进行差异表达分析,以期揭示信息素信号通路基因参与调节斑玉蕈菌丝的生长、子实体形成和发育的作用。研究结果表明:斑玉蕈菌丝培养40-80d过程中,子实体产量呈上升的趋势,说明菌丝的成熟程度对产量会产生重要影响。对斑玉蕈基因组中的信息素信号通路基因进行分析鉴定共获得了8个关键基因。信息素通路基因差异表达分析表明:在菌丝培养40-80d过程中,大部分信息素信号通路基因在第60天时表达量最高,其中ste20cdc24ste12上调了4-20倍,而在第80天出现下降。从菌丝恢复到扭结形成原基和子实体发育的过程中,大多数基因在原基时期表达量最高,其中ste20cdc24ste11ste12表达量上调最为显著,在子实体成熟期这些基因表达量下降。因此,这说明在菌丝营养生长过程中,在第60天菌丝细胞增殖生长最为旺盛,而在第80天菌丝细胞基本停止生长,菌丝也逐渐达到成熟。同时,在菌丝生殖生长过程中,斑玉蕈持续地上调信息素通路基因表达使菌丝细胞不断地分裂增殖,从而使新生的菌丝扭结形成原基,其中ste3ste20cdc24ste11ste12基因可能对斑玉蕈菌丝细胞的分裂增殖和诱导子实体形成起到关键的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号