首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) – a natural polyphenol component of green tea – to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content.In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.  相似文献   

2.
Down syndrome (DS) is caused by trisomy 21, and it is characterized by developmental brain disorders and neurological dysfunction. Clinical studies and basic research have revealed that defects in mitochondrial function contribute to the pathogenesis of DS. However, the underlying mechanisms of mitochondrial dysfunction in DS remain unclear. In this study, we first generated GABAergic interneurons and medial ganglionic eminence (MGE) organoids from DS patients and control induced pluripotent stem cells. The mitochondria were abnormally clustered in the perinuclear region of GABA neurons and cell in MGE organoids from DS patients, which exhibited impaired mitochondrial function as assessed by seahorse oxidative phosphorylation assay. Inhibition of the DSCAM-PAK1 pathway by gene editing or treatment with a small molecule corrected mitochondrial perinuclear aggregation in cells from DS patients. Therefore, our study provides insight into the potential mechanism of mitochondrial dysfunction in DS.  相似文献   

3.
4.
Structural changes and abnormal function of mitochondria have been documented in Down's syndrome (DS) cells, patients, and animal models. DS cells in culture exhibit a wide array of functional mitochondrial abnormalities including reduced mitochondrial membrane potential, reduced ATP production, and decreased oxido-reductase activity. New research has also brought to central stage the prominent role of oxidative stress in this condition. This review focuses on recent advances in the field with a particular emphasis on novel translational approaches involving the utilization of coenzyme Q(10) (CoQ(10) ) to treat a variety of clinical phenotypes associated with DS that are linked to increased oxidative stress and energy deficits. CoQ(10) has already provided promising results in several different conditions associated with altered energy metabolism and oxidative stress in the CNS. Two studies conducted in Ancona investigated the effect of CoQ(10) treatment on DNA damage in DS patients. Although the effect of CoQ(10) was evidenced only at single cell level, the treatment affected the distribution of cells according to their content in oxidized bases. In fact, it produced a strong negative correlation linking cellular CoQ(10) content and the amount of oxidized purines. Results suggest that the effect of CoQ(10) treatment in DS not only reflects antioxidant efficacy, but likely modulates DNA repair mechanisms.  相似文献   

5.
Obesity and metabolic syndrome are associated with an increased risk for several diabetic complications, including diabetic nephropathy and chronic kidney diseases. Oxidative stress and mitochondrial dysfunction are often proposed mechanisms in various organs in obesity models, but limited data are available on the kidney. Here, we fed a lard-based high-fat diet to mice to investigate structural changes, cellular and subcellular oxidative stress and redox status, and mitochondrial biogenesis and function in the kidney. The diet induced characteristic changes, including glomerular hypertrophy, fibrosis, and interstitial scarring, which were accompanied by a proinflammatory transition. We demonstrate evidence for oxidative stress in the kidney through 3-nitrotyrosine and protein radical formation on high-fat diet with a contribution from iNOS and NOX-4 as well as increased generation of mitochondrial oxidants on carbohydrate- and lipid-based substrates. The increased H(2)O(2) emission in the mitochondria suggests altered redox balance and mitochondrial ROS generation, contributing to the overall oxidative stress. No major derailments were observed in respiratory function or biogenesis, indicating preserved and initially improved bioenergetic parameters and energy production. We suggest that, regardless of the oxidative stress events, the kidney developed an adaptation to maintain normal respiratory function as a possible response to an increased lipid overload. These findings provide new insights into the complex role of oxidative stress and mitochondrial redox status in the pathogenesis of the kidney in obesity and indicate that early oxidative stress-related changes, but not mitochondrial bioenergetic dysfunction, may contribute to the pathogenesis and development of obesity-linked chronic kidney diseases.  相似文献   

6.
Down syndrome (DS) is the most common genetic cause of intellectual disability in children, and the number of adults with DS reaching old age is increasing. By the age of 40 years, virtually all people with DS have sufficient neuropathology for a postmortem diagnosis of Alzheimer disease (AD). Trisomy 21 in DS leads to an overexpression of many proteins, of which at least two are involved in oxidative stress and AD: superoxide dismutase 1 (SOD1) and amyloid precursor protein (APP). In this study, we tested the hypothesis that DS brains with neuropathological hallmarks of AD have more oxidative and nitrosative stress than those with DS but without significant AD pathology, as compared with similarly aged-matched non-DS controls. The frontal cortex was examined in 70 autopsy cases (n = 29 control and n = 41 DS). By ELISA, we quantified soluble and insoluble Aβ40 and Aβ42, as well as oligomers. Oxidative and nitrosative stress levels (protein carbonyls, 4-hydroxy-2-trans-nonenal (HNE)-bound proteins, and 3-nitrotyrosine) were measured by slot-blot. We found that soluble and insoluble amyloid beta peptide (Aβ) and oligomers increase as a function of age in DS frontal cortex. Of the oxidative stress markers, HNE-bound proteins were increased overall in DS. Protein carbonyls were correlated with Aβ40 levels. These results suggest that oxidative damage, but not nitrosative stress, may contribute to the onset and progression of AD pathogenesis in DS. Conceivably, treatment with antioxidants may provide a point of intervention to slow pathological alterations in DS.  相似文献   

7.
Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli.  相似文献   

8.
BackgroundIncreasing evidence from pathological and biochemical investigations suggests that mitochondrial metabolic impairment and oxidative stress play a crucial role in the pathogenesis of mitochondrial diseases, such as mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, and various neurodegenerative disorders. Recent advances in molecular imaging technology with positron emission tomography (PET) and functional magnetic resonance imaging (MRI) have accomplished a direct and non-invasive evaluation of the pathophysiological changes in living patients.Scope of reviewIn this review, we focus on the latest achievements of molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders.Major conclusionsMolecular imaging with PET and MRI exhibited mitochondrial metabolic changes, such as enhanced glucose utilization with lactic acid fermentation, suppressed fatty acid metabolism, decreased TCA-cycle metabolism, impaired respiratory chain activity, and increased oxidative stress, in patients with MELAS syndrome. In addition, PET imaging clearly demonstrated enhanced cerebral oxidative stress in patients with Parkinson's disease or amyotrophic lateral sclerosis. The magnitude of oxidative stress correlated well with clinical severity in patients, indicating that oxidative stress based on mitochondrial dysfunction is associated with the neurodegenerative changes in these diseases.General significanceMolecular imaging is a promising tool to improve our knowledge regarding the pathogenesis of diseases associated with mitochondrial dysfunction and oxidative stress, and this would facilitate the development of potential antioxidants and mitochondrial therapies.  相似文献   

9.
帕金森病(Parkinson’s disease,PD)的一个主要病理特征就是中脑黑质多巴胺能神经元的丧失,目前研究认为该病理变化与多种因素有关,包括蛋白质异常积聚、泛素蛋白酶体系统功能异常、神经炎症、线粒体损伤和氧化应激。在帕金森病人和动物模型中,中脑黑质有着明显的氧化改变。帕金森病的遗传和环境因素均会作用于线粒体,尤其对线粒体呼吸链复合体I有着抑制作用,造成线粒体损伤,产生活性氧(ROS)。活性氧的大量产生造成脂类、蛋白质和DNA的氧化,从而加剧多巴胺能神经元的线粒体和细胞损伤。多巴胺代谢过程中会产生活性氧,该自身代谢特点决定了多巴胺能神经元存在有较高的氧化应激,易受环境因素的影响。因而,线粒体的氧化损伤在帕金森病病理发生中起着重要作用。  相似文献   

10.
With age, mitochondrial DNA mutations and oxidative stress increase, leading to the hypothesis that the production of reactive oxygen species causes the pathogenic effects of mitochondrial DNA mutations. We tested this hypothesis using transgenic mice that develop cardiomyopathy due to the accumulation of mitochondrial DNA mutations specifically in the heart. Surprisingly, the mechanism of pathogenesis does not involve increased oxidative stress. The amounts of DNA and protein oxidative adducts are not elevated in the transgenic heart. Neither are signs of increased oxidative stress detected by measurements of enzyme function or oxidative defense systems. Rather, we find that the mitochondrial DNA mutations induce a cytoprotective response including increases in the levels of Bcl-2 and Bfl-1, pro-survival proteins that inhibit apoptosis, and atrial natriuretic factor. Bcl-2 is elevated in nearly all cardiomyocytes before the onset of dilated cardiomyopathy. These results raise the possibility that a signaling pathway between the mitochondrion and the nucleus mediates the pathogenic effect of mitochondrial DNA mutations.  相似文献   

11.
Mitochondrial involvement plays an important role in neurodegenerative diseases. At least one-third of adult carriers of a FMR1 premutation (55-200 CGG repeats) are at risk of presenting an adult-onset neurodegenerative disorder known as fragile X-associated tremor/ataxia syndrome (FXTAS). In an attempt to provide new insights into the mechanisms involved in the pathogenesis of FXTAS, we characterized mitochondrial function and dynamics by the assessment of oxidative respiratory chain function, mitochondrial content, oxidative stress levels, and mitochondrial network complexity. Regarding mitochondrial function, we found that mitochondrial respiratory capacity is compromised in skin fibroblasts whereas in blood, no differences were observed between the FXTAS and control groups. Furthermore, fibroblasts from FXTAS patients presented altered mitochondrial architecture, with more circular and less interconnected mitochondria being observed. Mitochondrial function and dynamics deregulation and characteristic of neurological disorders are present in FXTAS patients. These features might be limiting temporal and spatial bioenergetics cells supply and thus contributing to disease pathogenesis.  相似文献   

12.
Ammonia is a neurotoxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE) and other neurological disorders, and astrocytes are thought to be the principal target of ammonia toxicity. While the precise mechanisms of ammonia neurotoxicity remain to be more clearly defined, altered bioenergetics and oxidative stress appear to be critical factors in its pathogenesis. It has recently been demonstrated that pathophysiological concentrations of ammonia induce the mitochondrial permeability transition (MPT) in cultured astrocytes, a process associated with mitochondrial dysfunction, and frequently caused by oxidative stress. This study investigated the potential role of oxidative stress in the induction of the MPT by ammonia. Accordingly, the effect of various antioxidants on the induction of the MPT by ammonia in cultured astrocytes was examined. Astrocytes were subjected to NH4Cl (5 mM) treatment for 2 days with or without various antioxidants. The MPT was assessed by quantitative fluorescence imaging for the mitochondrial membrane potential (DeltaPsim), employing the potentiometric dye TMRE; by changes in mitochondrial calcein fluorescence and by 2-deoxyglucose-6-phosphate (2-DG-6-P) changes in mitochondrial permeability. Astrocytes treated with ammonia significantly dissipated the DeltaPsim, which was blocked by the MPT inhibitor, cyclosporin A, caused a decrease in mitochondrial calcein fluorescence and increased 2-DG-6-P permeability into mitochondria. All of these findings are consistent with induction of the MPT. Pretreatment with SOD, catalase, desferroxamine, Vitamin E, PBN and the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), completely blocked the ammonia-induced MPT. These data provide strong evidence that oxidative stress is involved in the induction of the MPT by ammonia, and suggest that oxidative stress and the subsequent induction of the MPT contribute to the pathogenesis of HE and other hyperammonemic disorders.  相似文献   

13.
Down syndrome (DS) is a developmental disorder associated with mental retardation (MR) and early onset Alzheimer's disease (AD). These CNS phenotypes are attributed to ongoing neuronal degeneration due to constitutive overexpression of chromosome 21 (HSA21) genes. We have previously shown that HSA21 associated S100B contributes to oxidative stress and apoptosis in DS human neural progenitors (HNPs). Here we show that DS HNPs isolated from fetal frontal cortex demonstrate not only disturbances in redox states within the mitochondria and increased levels of progenitor cell death but also transition to more gliocentric progenitor phenotypes with a consequent reduction in neuronogenesis. HSA21 associated S100B and amyloid precursor protein (APP) levels are simultaneously increased within DS HNPs, their secretions are synergistically enhanced in a paracrine fashion, and overexpressions of these proteins disrupt mitochondrial membrane potentials and redox states. HNPs show greater susceptibility to these proteins as compared to neurons, leading to cell death. Ongoing inflammation through APP and S100B overexpression further promotes a gliocentric HNPs phenotype. Thus, the loss in neuronal numbers seen in DS is not merely due to increased HNPs cell death and neurodegeneration, but also a fundamental gliocentric shift in the progenitor pool that impairs neuronal production.  相似文献   

14.
Alzheimer disease (AD) is an age-related neurodegenerative disorder, characterized histopathologically by the presence of senile plaques (SP), neurofibrillary tangles and synapse loss in selected brain regions. Positron emission tomography (PET) studies of glucose metabolism revealed decreased energetics in brain of subjects with AD and arguably its earliest form, mild cognitive impairment (MCI), and this decrease correlated with brain structural studies using MRI. The main component of senile plaques is amyloid beta-peptide (Aβ), a 40–42 amino acid peptide that as oligomers is capable of inducing oxidative stress under both in vitro and in vivo conditions and is neurotoxic. In the mitochondria isolated from AD brain, Aβ oligomers that correlated with the reported increased oxidative stress markers in AD have been reported. The markers of oxidative stress have been localized in the brain regions of AD and MCI that show pathological hallmarks of this disease, suggesting the possible role of Aβ in the initiation of the free-radical mediated process and consequently to the build up oxidative stress and AD pathogenesis. Using redox proteomics our laboratory found a number of oxidatively modified brain proteins that are directly in or are associated with the mitochondrial proteome, consistent with a possible involvement of the mitochondrial targeted oxidatively modified proteins in AD progression or pathogenesis. The precise mechanistic link between mitochondrial oxidative damage and role of oligomeric Aβ has not been explicated. In this review, we discuss the role of the oxidation of mitochondria-relevant brain proteins to the pathogenesis and progression of AD.  相似文献   

15.
Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD.  相似文献   

16.
17.
Altered dopamine homeostasis plays a key role in the pathogenesis of Parkinson's disease. The generation of reactive oxygen species by spontaneous dopamine oxidation impairs mitochondrial function, causing in turn an enhancement of oxidative stress. Recent findings have highlighted the role of mitochondrial outer membrane proteins in the regulation of the correct disposal of damaged mitochondria. Here, we report the effect of altered dopamine homeostasis on the mitochondrial functionality in human neuroblastoma SH-SY5Y cells, a cellular model widely used to reproduce impaired dopamine homeostasis. We observed that dopamine significantly and relevantly reduces VDAC1 and VDAC2 levels without any change in the mRNA levels. Although mitochondria are depolarized by dopamine and mitochondrial calcium influx is reduced, dysfunctional mitochondria are not removed by mitophagy as it would be expected. Thus, alteration of dopamine homeostasis induces a mitochondrial depolarization not counteracted by the mitophagy quality control. As a consequence, the elimination of VDACs may contribute to the altered mitochondrial disposal in PD pathogenesis, thus enhancing the role of oxidative stress.  相似文献   

18.
DS (Down's syndrome) is the most common human aneuploidy associated with mental retardation and early neurodegeneration. Mitochondrial dysfunction has emerged as a crucial factor in the pathogenesis of numerous neurological disorders including DS, but the cause of mitochondrial damage remains elusive. In the present study, we identified new molecular events involved in mitochondrial dysfunction which could play a role in DS pathogenesis. We analysed mitochondrial respiratory chain function in DS-HSFs (Down's syndrome human foetal skin fibroblasts; human foetal skin fibroblasts with chromosome 21 trisomy) and found a selective deficit in the catalytic efficiency of mitochondrial complex I. The complex I deficit was associated with a decrease in cAMP-dependent phosphorylation of the 18 kDa subunit of the complex, due to a decrease in PKA (protein kinase A) activity related to reduced basal levels of cAMP. Consistently, exposure of DS-HSFs to db-cAMP (dibutyryl-cAMP), a membrane-permeable cAMP analogue, stimulated PKA activity and consequently rescued the deficit of both the cAMP-dependent phosphorylation and the catalytic activity of complex I; conversely H89, a specific PKA inhibitor, suppressed these cAMP-dependent activations. Furthermore, in the present paper we report a 3-fold increase in cellular levels of ROS (reactive oxygen species), in particular superoxide anion, mainly produced by DS-HSF mitochondria. ROS accumulation was prevented by db-cAMP-dependent activation of complex I, suggesting its involvement in ROS production. Taken together, the results of the present study suggest that the drastic decrease in basal cAMP levels observed in DS-HSFs participates in the complex I deficit and overproduction of ROS by DS-HSF mitochondria.  相似文献   

19.
The majority of experimental and clinical studies indicates that the hypertrophied and failing myocardium are characterized by changes in energy and substrate metabolism that attributed to failing heart changes at the genomic level, in fact, heart failure is caused by various diseases, their energy metabolism and substrate are in different genetic variations, then the potential significance of the molecular mechanisms for the aetiology of heart failure is necessary to be evaluated. Persistent viral infection (especially coxsackievirus group B3) of the myocardium in viral myocarditis and viral dilated cardiomyopathy has never been neglected by experts. This study aimed to explore the role and regulatory mechanism of the altered gene expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism in viral dilated cardiomyopathy. cDNA Microarray technology was used to evaluate the expression of >35,852 genes in a mice model of viral dilated cardiomyopathy. In total 1385 highly different genes expression, we analyzed 33 altered genes expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism and further selected real-time-PCR for quantity one of regulatory mechanisms for energy including fatty acid metabolism—the UCP2 and assayed cytochrome C oxidase activity by Spectrophotometer to explore mitochondrial oxidative phosphorylation function. We found obviously different expression of 33 energy metabolism genes associated with mitochondria oxidative phosphorylation, fatty acid metabolism in cardiomyopathy mouse heart, the regulatory gene for energy metabolism: UCP2 was down-regulated and cytochrome C oxidase activity was decreased. Genes involved in both fatty acid metabolism and mitochondrial oxidative phosphorylation were down-regulated, mitochondrial uncoupling proteins (UCP2) expression did not increase but decrease which might be a kind of adaptive protection response to regulate energy metabolism for ATP produce.  相似文献   

20.
Most Down's syndrome (DS) patients develop Alzheimer's disease (AD) neuropathology. Astrocyte and neuronal cultures derived from fetal DS brain show alterations in the processing of amyloid beta precursor protein (AbetaPP), including increased levels of AbetaPP and C99, reduced levels of secreted AbetaPP (AbetaPPs) and C83, and intracellular accumulation of insoluble Abeta42. This pattern of AbetaPP processing is recapitulated in normal astrocytes by inhibition of mitochondrial metabolism, consistent with impaired mitochondrial function in DS astrocytes. Intracellular Abeta42 and reduced AbetaPPs are also detected in DS and AD brains. The survival of DS neurons is markedly increased by recombinant or astrocyte-produced AbetaPPs, suggesting that AbetaPPs may be a neuronal survival factor. Thus, mitochondrial dysfunction in DS may lead to intracellular deposition of Abeta42, reduced levels of AbetaPPs, and a chronic state of increased neuronal vulnerability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号