首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to evaluate (R)-&#103-hydroxyisobutyric acid (HIBA) production by microbial stereoselective oxidation of 2-methyl-1,3 propanediol under different conditions, and to compare the performance of this bioconversion in traditional aqueous media and aqueous/organic biphasic media. The oxidation is a two-step reaction with hydroxyisobutanal as an intermediate. Among the operational factors tested, pH and aeration were those, which most significantly affected the biocatalytic activity. Enantiomeric excesses higher than 95% were consistently obtained. For substrate concentrations above 50 mg ml?1 a slight substrate inhibition was observed. Product inhibition was much stronger, and together with the decrease of the pH during the bioconversion was the most important limiting factor in long-term bioconversions. Kinetic parameters were determined for different pH values. A compromise pH value of 4 was determined to be the optimum for HIBA production and simultaneous extraction with an organic phase of trioctyl phosphine oxide (TOPO) in isooctane.  相似文献   

2.
This paper describes the bioconversion of 2-methyl-1,3-propanediol to (R)-beta-hydoxyisobutyric acid (HIBA) by Acetobacter ALEI in a hollow fiber membrane bioreaction system arrangement that allows the integration of three liquid phases: the aqueous bioconversion phase, the organic phase consisting of a solution of trioctyl phosphine oxide (TOPO) in isooctane, and the third phase consisting of a basic stripping solution that allows reextraction of HIBA from the organic phase. A comparison of HIBA mass transfer experiments was carried out in the membrane reactor with two and three phases for different pH and TOPO concentrations. The use of the three-phase arrangement allows the extraction of high quantities of HIBA from the aqueous medium (higher than 85%) independently of the pH, whereas in the two-phase system the percentage of HIBA extracted from the aqueous medium was lower, 42% in the best case, and strongly influenced by the pH. The percentage of the extractive agent TOPO in the organic phase influenced on the mass transfer rate in both bi- and triphasic arrangements. By simply integrating the re-extraction phase in the system it was possible to increase the extraction yield by 2-fold, reduce the amount of TOPO by 4-fold, and operate at the more favorable pH 4. A bioconversion experiment was done in these conditions (pH = 4, TOPO = 5%) to confirm the advantages of including the third stripping solution. Fed-batch operation of the triphasic membrane reactor was maintained for more than 20 h, reaching an HIBA concentration in the stripping solution of 29 g L(-)(1).  相似文献   

3.
The selective cleavage of the β-sitosterol side-chain by free Mycobacterium sp. NRRL B-3805 cells was used as a model system for the study of solvent effects in a whole-cell bioconversion in two phase aqueous–organic media. This multi-step degradation pathway leads to the production of 4-androstene-4,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) as a minor product. In an attempt to correlate the substrate and cell partition effects and solvent hydrophobicity (log P) with biocatalytic activity, 15 carboxylic acid esters with log P values between 3 and 10 were screened. The results indicated that the toxicity of the tested solvents in this system could not be correlated to their log P, but seemed to depend on their ability to accumulate in the cells, as these showed a strong affinity towards the organic phase. Different solvent/aqueous ratios and hydrodynamic conditions were further tested in the solvent systems (phthalates) showing significant biodegradation activity. The bioconversion rate was generally not much affected by the stirring speed in the employed range (150–300 rpm) but was strongly influenced by the aqueous/organic phase ratio. Results suggest that the bioconversion takes place at the interphase, its rate being possibly limited by mass transport inside the organic phase.  相似文献   

4.
A membrane bioreactor was developed to perform an extractive bioconversion aimed at the production of isovaleraldehyde by isoamyl alcohol oxidation with whole cells of Gluconobacter oxydans. A liquid/liquid extractive system using isooctane as extractant and assisted by a hollow-fiber hydrophobic membrane was chosen to recover the product. The aqueous bioconversion phase and the organic phase were maintained apart with the aid of the membrane. The extraction of alcohol and aldehyde was evaluated by performing equilibrium and mass transfer kinetic studies. The bioprocess was then performed in a continuous mode with addition of the substrate to the aqueous phase. Fresh solvent was added to the organic phase and exhausted solvent was removed at the same flow rate. The extractive system enabled a fast and selective in situ removal of the aldehyde from the water to the organic phase. High conversions (72–90%) and overall productivity (2.0–3.0 g l−1 h−1) were obtained in continuous experiments performed with different rates of alcohol addition (1.5–3.5 g l−1 h−1). Cell deactivation was observed after 10–12 h of operation.  相似文献   

5.
The low substrate specificity of alcohol oxidase from Pichia pastoris makes this enzyme system of potential biotechnological interest. Whole cells of Pichia pastoris are able to oxidize benzyl alcohol to benzaldehyde in aqueous reaction media. The low water solubility of the reactant and product of this bioconversion, combined with the ability of both to strongly inhibit the reaction, favor the use of nonaqueous reaction fluids. Purified alcohol oxidase was shown to function in a number of 2-phase reaction systems of varied aqueous to organic phase ratios (0.01-0.05 v/v). The apparent V(max) and K(m) were 5.26 g/Lh and 7.41 g/L respectively, for the oxidation of benzyl alcohol to benzaldehyde in hexane containing 3% aqueous phase. The volume of the aqueous phase had a strong effect on the reaction, with an aqueous: organic ratio of 3-5% found to be optimum. The enzyme could be firmly immobilized on DEAE-Biogel (Biorad) to enhance stability and biocatalyst recovery.  相似文献   

6.
Mycobacterium sp. NRRL B-3805 cells immobilized on Celite were effectively used for the selective side-chain cleavage of sitosterol to androstenedione (AD) in organic media (phthalate derivatives). Kinetic studies were performed with sitosterol concentrations up to 24 mM, with different Celite materials and particle sizes. Higher activity levels were observed when a larger pore size Celite was used as immobilization matrix. Substrate inhibition was observed for sitosterol concentrations above 6 mM. Toxicity effects were not apparently correlated with the high log P solvents (>9) here used as bioconversion media. The use of immobilized cells in repeated batch biotransformations did not prove effective, mainly due to biocatalyst desorption during the periodical, aqueous washing steps used for nutrient delivery to the cells.  相似文献   

7.
Using free and immobilized whole cells of Pichia pastoris, the biocatalytic oxidation of benzyl alcohol was investigated in different two-phase systems. This reaction was strongly influenced by both the substrate and product inhibitions, and the production rate of benzaldehyde in the aqueous system became maximum at the initial substrate concentration of ca. 29 g/L with the aldehyde formation less than 4 to 5 g/L even after a longer reaction period. The reaction rates in the two-liquid phase systems were predominantly determined by the partitioning behaviors of the substrate and product between the two phases rather than by enzyme deactivation by the organic solvents. In the two-liquid phase systems, consequently, the organic solvent acted as a reservior to reduce these inhibitory effects, and it was essential to select the organic solvent providing the optimal partitioning of the substrate into the aqueous phase as well as the preferential extraction of the product into the organic phase. The whole cells immobilized in a mixed matrix composed of silicone polymer [>50% (v/v)] and Ca alginate gel (<50%) worked well in the xylene and decane media, providing comparable activities with the free cells. The production rate of aldehyde was also influenced by the solute partitioning into the hydrophilic alginate phase where the cells existed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
In this study, an efficient enzymatic process for the synthesis of 4-hydroxyphenylacetaldehyde (4-HPAA) from tyramine was developed using whole cells of recombinant Escherichia coli co-expressing primary amine oxidase (PrAO) from E. coli and catalase (CAT) from Bacillus pumilus. The reaction conditions for the synthesis of 4-HPAA were systematically optimized starting from a monophasic aqueous buffer. The optimum reaction temperature, pH, and biocatalyst loading were 33 °C, 7.5, and 20 g/L wet cells, respectively. Substrate feeding strategies were employed to alleviate substrate inhibition, providing a 14.8 % increase in yield. A biphasic catalytic system was explored to avoid product inhibition and thus further improve the 4-HPAA yield. Ethyl acetate was found to be the best organic solvent, and the optimum volume ratio of the organic phase to the aqueous phase was 40 % (v/v). Under the optimized conditions on a 1 L scale, a yield of 76.5 % was obtained with a substrate concentration of 120 mM. Thus, the bioconversion was more efficient in the ethyl acetate/buffer biphasic system than in the monophasic aqueous system, and the yield of 4-HPAA was improved 1.89-fold.  相似文献   

9.
The oxidation of beta-D-glucose by the enzyme glucose oxidase was studied in aqueous medium, in solutions of surfactants AOT (2-ethylhexylsulfosuccinate, sodium salt) TX-100 (polyethylene glycol p-tert octyl phenyl ether) and in w/o microemulsion medium (water/AOT/decane) at different water/AOT mole ratio (omega), pH, temperature and in presence of additives. The time-dependent activities of the enzyme in aqueous and microemulsion media were determined. The catalytic process was retarded in the presence of TX-100 and AOT. In microemulsion medium, kcat values exhibited a deformed W-shaped profile with omega. At pH 7, a maximum value of kcat was observed at omega = 10.6. The kcat values were found to be higher in microemulsion medium than in aqueous medium at both pH's 7 and 8. Activation parameters for the kinetic process were evaluated together with the thermodynamics of the enzyme-substrate Michaelis complex. The deltaG* was lower, whereas deltaH* and deltaS* were higher in microemulsion than in water. The Michaelis constant, KM was also lower in microemulsion. The inhibition effects of the additives, NaNO3 and NaC were studied in both aqueous and microemulsion media by examining their influences on catalytic constant, kcat and Michaelis constant KM. In microemulsion, both the additives NaNO3 and NaC produced non-competitive inhibition.  相似文献   

10.
He J  Mao X  Sun Z  Zheng P  Ni Y  Xu Y 《Biotechnology journal》2007,2(2):260-265
In this study, whole cells of Saccharomyces uvarum SW-58 were applied in an aqueous-organic solvent biphasic system for the asymmetric reduction of ethyl 4,4,4-trifluoroacetoacetate to ethyl (R)-4,4,4-trifluoro-3-hydroxybutanoate [(R)-2]. The results of reduction in different aqueous-organic solvent biphasic systems showed that dibutylphthalate provided the best compromise between the biocompatibility and the partition of substrate and product among the solvents tested. To optimize the reaction, several factors such as reaction pH, temperature, shaking speed, volume ratio of the aqueous phase to the organic phase and ratio of biomass/substrate were investigated. It was found that the change of these factors obviously influenced the conversion and initial reaction rate, and had a minor effect on the enatiomeric excess of the product. Under the optimal conditions, 85.0% of conversion and 85.2% of enatiomeric excess were achieved. The bioconversion in the biphasic system was more efficient compared with that in the monophasic aqueous system, and product concentration as high as 54.6 g/L was reached in the organic phase without addition of co-enzyme.  相似文献   

11.
Equilibrium conversions were observed in the range of 60.2-76.0% with different initial compositions of reaction media for the bioreduction of acetophenone using resting cells of Saccharomyces cerevisiae in aqueous solutions at 30 degrees C. The reduction of acetophenone in the cells under anaerobic conditions is considered to be coupled with the oxidation of ethanol to acetate in the cytoplasm. A biphasic thermodynamic model is proposed which includes a nonuniform distribution of reagents across the cell membrane, a transmembrane pH gradient, ideal and nonideal solution models, and a basic reaction stoichiometry (ACP + (1/2) EtOH + (1/2)H2O <--> PEA + (1/2)Ac- + (1/2)H+). The intracellular activity coefficients were based on the Lewis-Randall rule for acetophenone, phenethyl alcohol, and H2O and Henry's law for ethanol, acetate anion, and H+. The overall standard Gibbs free energy was estimated to be -0.11 kcal/mol at a pH 7, 25 degrees C, and 1 atm. The intracellular thermodynamic activity coefficients of acetophenone and phenethyl alcohol were predicted to be 471.2 and 866.4, respectively, using the measured initial distribution coefficients and calculated extracellular activity coefficients. The model reflected a zero Gibbs free energy change at calculated conversions within 4% of the measured equilibrium conversions. The analysis verified the effect of the concentration ratio of the substrate acetophenone to the co-substrate ethanol on the conversion efficiency and suggested that the intracellular pH and the pH gradient across the cell transmembrane significantly affect the predicted equilibrium conversion. The intracellular pH of resting, viable cells of Bakers' yeast at the bioconversion conditions was determined experimentally to be 5.77.  相似文献   

12.
Summary The kinetics of ethanol oxidation by non-growing cells of Candida utilis in different media at various external pH values was determined experimentally. The statistical discrimination between two rival mathematical models has shown that the mechanism of non-specific substrate inhibition of respiration kinetics fits better the experimental data. It has been found that the maximum respiration activity is controlled by the buffering properties of organic polycarbonic acids in the medium. The pH values at which the maximum respiration rate was observed were close to the pK values of the organic acids in the buffer solution, independently of whether the acids were metabolized or not. Offprint requests to: Jan Paca  相似文献   

13.
The bioconversion of L-phenylalanine (L-Phe) to 2-phenylethanol (PEA) by the yeast Saccharomyces cerevisiae is limited by the toxicity of the product. PEA extraction by a separate organic phase in the fermenter is the ideal in situ product recovery (ISPR) technique to enhance productivity. Oleic acid was chosen as organic phase for two-phase fed-batch cultures, although it interfered to some extent with yeast viability. There was a synergistic inhibitory impact toward S. cerevisiae in the presence of PEA, and therefore a maximal PEA concentration in the aqueous phase of only 2.1 g/L was achieved, compared to 3.8 g/L for a normal fed-batch culture. However, the overall PEA concentration in the fermenter was increased to 12.6 g/L, because the PEA concentration in the oleic phase attained a value of 24 g/L. Thus, an average volumetric PEA production rate of 0.26 g L(-1) h(-1) and a maximal volumetric PEA production rate of 0.47 g L(-1) h(-1) were achieved in the two-phase fed-batch culture. As ethanol inhibition had to be avoided, the production rates were limited by the intrinsic oxidative capacity of S. cerevisiae. In addition, the high viscosity of the two-phase system lowered the k(l)a, and therefore also the productivity. Thus, if a specific ISPR technique is planned, it consequently has to be remembered that the productivity of this bioconversion process is also quickly limited by the k(l)a of the fermenter at high cell densities.  相似文献   

14.
The oxidation of various phenolics and aromatic amines by manganese-dependent peroxidase (MnP) of Bjerkandera adusta was examined in aqueous organic media. MnP retained its activities in several 70% (v/v) aqueous solutions of water-miscible organic solvents including ethylene glycol, diethylene glycol, acetone and acetonitrile. The absorption spectra of MnP in these aqueous organic media were similar to that observed in the reaction without solvent addition, indicating that the heme of MnP was little affected by the addition of these water-miscible organic solvents. MnP was also found to oxidize Mn(II) to Mn(III) in these 70% (v/v) aqueous organic media. The oxidation of Mn(II) by MnP was correlated with the Dimroth–Reichardt parameter, ET(30), of the solvents. Furthermore, MnP catalyzed the oxidation of anisidines, aminophenols, phenylenediamines and phenolics in aqueous 70% (v/v) acetone, acetonitrile and diethylene glycol media. Aromatic amines that have high hydrophobicity were shown to be suitable for the reaction of MnP in aqueous water-miscible organic media.  相似文献   

15.
Summary This paper reports the production of 2-phenylacetaldehyde from 2-phenylethanol by acetic bacteria. Several strains of acetic bacteria were investigated and three were found to be effective for this bioconversion. Different conditions (different C source for the microorganisms, pH, substrate concentration, cell immobilization) were tested with yields ranging from 30 to 52.6%.  相似文献   

16.
The use of a biocompatible water-immiscible organic phase as a substrate and product pool has been acknowledged as an effective tool to overcome the low volumetric productivity of aqueous bioconversion systems involving hydrophobic compounds. The growing environmental and public health awareness is nevertheless leading to restrictions in the use of organic solvents in industrial processes, in order to render these more environmentally friendly. Different approaches are hence being assessed for the design of alternative bioconversion media, involving the use of supercritical fluids, ionic liquids and natural oils and liquid polymers, among others.  相似文献   

17.
A systematic evaluation of the effect of key operational parameters on the selective cleavage of sitosterol to 4-androstene-3,17-dione (AD) with Mycobacterium sp. NRRL B-3805 in a dioctyl phthalate: aqueous buffer two-liquid phase system was performed. Of the parameters assessed, buffer composition, biomedium pH, temperature, and biomass and substrate concentration were those that mostly affected overall bioconversion rate. The optimum pH was 7.5 with Tris buffer. The highest bioconversion rate was observed at 35 °C, although at 40 °C bioconversion activity was virtually lost. Michaelis–Menten type kinetics adequately described the bioconversion system. Increasing biomass concentration from 10 to 70 gwet cell weight l−1 favored AD final yield, although the specific AD yield slightly decreased.  相似文献   

18.
Pseudomonas putida MC2 is a solvent-tolerant strain that accumulates 3-methylcatechol. In aqueous media, 10 mM of 3-methylcatechol was produced and production was limited by 3-methylcatechol toxicity to the biocatalyst. Production levels increased by introduction of a second, organic phase that provides the substrate toluene and extracts the product from the culture medium. Octanol was shown to be an appropriate second phase with respect to tolerance of the strain for this solvent and with respect to partitioning of both substrate and product. Per unit of overall reactor volume (octanol and water), best results were obtained with 50% (v/v) of octanol: an overall 3-methylcatechol concentration of 25 mM was reached with 96% of the product present in the octanol phase. These product concentrations are much higher than in aqueous media without organic solvent, indicating that biocatalysis in an organic/aqueous two-phase system is an improved set-up for high production levels of 3-methylcatechol.  相似文献   

19.
The stability and activity of the low redox potential Melanocarpus albomyces laccase (MaL) in various aqueous organic (acetone, ethanol, propylene glycol, diethylene glycol monomethyl ether) solvent systems was studied spectrophotometrically using 2,6-dimethoxyphenol (2,6-DMP) as substrate. In addition, reactivity of the enzyme with two lignans; matairesinol (MR) and 7-hydroxymatairesinol (HMR), was examined by oxygen consumption measurements in the most potential aqueous organic solvent systems. Polymerization of the lignans by MaL was verified by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and size exclusion chromatography (SEC). Polymerization of the higher molecular weight lignin model compound, dehydrogenation polymers (DHPs), was studied by SEC. The solubilities of industrial softwood and hardwood kraft lignins were evaluated as parameters for investigation of enzymatic modification in aqueous organic solvent systems. The functioning of MaL in different aqueous organic media was excellent. Propylene glycol and diethylene glycol monomethyl ether were better solvents than ethanol or acetone in enzymatic oxidations. Even though they were the best solvents for enzyme oxidation, ethanol and propylene glycol were selected for further tests because of their different physicochemical properties. The results obtained in this study for the use of laccase-catalysed reactions in organic solvents to improve the efficiency of lignin oxidation may be exploited in several applications and areas in which the solubility of the reactants or products is a limiting factor.  相似文献   

20.
A method for recording O2 concentrations in nonconducting organic media with the Clark oxygen electrode was developed. Spontaneous oxidation of Na2S2O4 and the enzymatic reduction of NaBO3 or H2O2 by bovine liver catalase trapped in hydrated micelles of dioctylsulfosuccinate (AOT)/toluene were used as model systems. O2 titration with the above systems showed that air-saturated 1.6 M H2O/0.2 M AOT/toluene media contain seven times more O2 (1.4 mM) than aqueous solutions (0.2 mM). The measured Km values of catalase for NaBO3 and H2O2 in organic media were Kmov = 15 and 17 mM, respectively, whereas in aqueous buffer the values were 45 and 54 mM. In the toluene media, catalase activity increased with the W0 (H2O/AOT molar ratio) of the micellar preparation, reaching maximal activity at W0 = 10-12; under this condition, the catalytic center activity (Kp) of H2O2 was 7 x 10(6) min-1, similar to that obtained in the aqueous buffer (H2O2 = 7 x 10(6) min-1). It was found that the optimal pH for catalase in toluene media (pH 8.0) was shifted 1.0 unit compared to that in the aqueous buffer (pH 7.0). On the other hand, catalase was severely inhibited by NaN3 in both media. Thus, polarography based on the Clark oxygen electrode seems to be an easy, rapid, and sensitive technique for studying enzyme reactions consuming or evolving O2 in apolar media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号