首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The hydrophobic cores of proteins predicted by wavelet analysis   总被引:7,自引:0,他引:7  
MOTIVATION: In the process of protein construction, buried hydrophobic residues tend to assemble in a core of a protein. Methods used to predict these cores involve use or no use of sequential alignment. In the case of a close homology, prediction was more accurate if sequential alignment was used. If the homology was weak, predictions would be unreliable. A hydrophobicity plot involving the hydropathy index is useful for purposes of prediction, and smoothing is essential. However, the proposed methods are insufficient. We attempted to predict hydrophobic cores with a low frequency extracted from the hydrophobicity plot, using wavelet analysis. RESULTS: The cores were predicted at a rate of 68.7%, by cross-validation. Using wavelet analysis, the cores of non-homologous proteins can be predicted with close to 70% accuracy, without sequential alignment. AVAILABILITY: The program used in this study is available from Intergalactic Reality (http://www.intergalact.com). CONTACT: hirakawa@grt.kyushu-u.ac.jp, kuhara@grt.kyushu-u.ac.jp  相似文献   

2.
3.
SUMMARY: P-cats is a web server that predicts the catalytic residues in proteins from the atomic coordinates. P-cats receives a coordinate file of the tertiary structure and sends out analytical results via e-mail. The reply contains a summary and two URLs to allow the user to examine the conserved residues: one for interactive images of the prediction results and the other for a graphical view of the multiple sequence alignment. AVAILABILITY: P-cats is freely available at http://p-cats.hgc.jp/p-cats CONTACT: kino@ims.u-tokyo.ac.jp  相似文献   

4.
5.
6.

Background

Protein-protein interaction (PPI) plays a core role in cellular functions. Massively parallel supercomputing systems have been actively developed over the past few years, which enable large-scale biological problems to be solved, such as PPI network prediction based on tertiary structures.

Results

We have developed a high throughput and ultra-fast PPI prediction system based on rigid docking, “MEGADOCK”, by employing a hybrid parallelization (MPI/OpenMP) technique assuming usages on massively parallel supercomputing systems. MEGADOCK displays significantly faster processing speed in the rigid-body docking process that leads to full utilization of protein tertiary structural data for large-scale and network-level problems in systems biology. Moreover, the system was scalable as shown by measurements carried out on two supercomputing environments. We then conducted prediction of biological PPI networks using the post-docking analysis.

Conclusions

We present a new protein-protein docking engine aimed at exhaustive docking of mega-order numbers of protein pairs. The system was shown to be scalable by running on thousands of nodes. The software package is available at: http://www.bi.cs.titech.ac.jp/megadock/k/.
  相似文献   

7.
MOTIVATION: Chemical carcinogenicity is an important subject in health and environmental sciences, and a reliable method is expected to identify characteristic factors for carcinogenicity. The predictive toxicology challenge (PTC) 2000-2001 has provided the opportunity for various data mining methods to evaluate their performance. The cascade model, a data mining method developed by the author, has the capability to mine for local correlations in data sets with a large number of attributes. The current paper explores the effectiveness of the method on the problem of chemical carcinogenicity. RESULTS: Rodent carcinogenicity of 417 compounds examined by the National Toxicology Program (NTP) was used as the training set. The analysis by the cascade model, for example, could obtain a rule 'Highly flexible molecules are carcinogenic, if they have no hydrogen bond acceptors in halogenated alkanes and alkenes'. Resulting rules are applied to predict the activity of 185 compounds examined by the FDA. The ROC analysis performed by the PTC organizers has shown that the current method has excellent predictive power for the female rat data. AVAILABILITY: The binary program of DISCAS 2.1 and samples of input data sets on Windows PC are available at http://www.clab.kwansei.ac.jp/mining/discas/discas.html upon request from the author. SUPPLEMENTARY INFORMATION: Summary of prediction results and cross validations is accessible via http://www.clab.kwansei.ac.jp/~okada/BIJ/BIJsupple.htm. Used rules and the prediction results for each molecule are also provided.  相似文献   

8.
MOTIVATION: We developed an algorithm to reconstruct ancestral sequences, taking into account the rate variation among sites of the protein sequences. Our algorithm maximizes the joint probability of the ancestral sequences, assuming that the rate is gamma distributed among sites. Our algorithm probably finds the global maximum. The use of 'joint' reconstruction is motivated by studies that use the sequences at all the internal nodes in a phylogenetic tree, such as, for instance, the inference of patterns of amino-acid replacement, or tracing the biochemical changes that occurred during the evolution of a given protein family. RESULTS: We give an algorithm that guarantees finding the global maximum. The efficient search method makes our method applicable to datasets with large number sequences. We analyze ancestral sequences of five gene families, exploring the effect of the amount of among-site-rate-variation, and the degree of sequence divergence on the resulting ancestral states. AVAILABILITY AND SUPPLEMENTARY INFORMATION: http://evolu3.ism.ac.jp/~tal/ Contact: tal@ism.ac.jp  相似文献   

9.
MOTIVATION: Since their initial development, integration and construction of databases for molecular-level data have progressed. Though biological molecules are related to each other and form a complex system, the information is stored in the vast archives of the literature or in diverse databases. There is no unified naming convention for biological object, and biological terms may be ambiguous or polysemic. This makes the integration and interaction of databases difficult. In order to eliminate these problems, machine-readable natural language resources appear to be quite promising. We have developed a workbench for protein name abbreviation dictionary (PNAD) building. RESULTS: We have developed PNAD Construction Support System (PNAD-CSS), which offers various convenient facilities to decrease the construction costs of a protein name abbreviation dictionary of which entries are collected from abstracts in biomedical papers. The system allows the users to concentrate on higher level interpretation by removing some troublesome tasks, e.g. management of abstracts, extracting protein names and their abbreviations, and so on. To extract a pair of protein names and abbreviations, we have developed a hybrid system composed of the PROPER System and the PNAD System. The PNAD System can extract the pairs from parenthetical-paraphrases involved in protein names, the PROPER System identified these paris, with 98.95% precision, 95.56% recall and 97.58% complete precision. AVAILABILITY: PROPER System is freely available from http://www.hgc.inc.u-tokyo.ac.jp/service/tooldoc /KeX/intro.html. The other software are also available on request. Contact the authors. CONTACT: mikio@ims.u-tokyo.ac.jp  相似文献   

10.
A grid layout algorithm for automatic drawing of biochemical networks   总被引:4,自引:0,他引:4  
MOTIVATION: Visualization is indispensable in the research of complex biochemical networks. Available graph layout algorithms are not adequate for satisfactorily drawing such networks. New methods are required to visualize automatically the topological architectures and facilitate the understanding of the functions of the networks. RESULTS: We propose a novel layout algorithm to draw complex biochemical networks. A network is modeled as a system of interacting nodes on squared grids. A discrete cost function between each node pair is designed based on the topological relation and the geometric positions of the two nodes. The layouts are produced by minimizing the total cost. We design a fast algorithm to minimize the discrete cost function, by which candidate layouts can be produced efficiently. A simulated annealing procedure is used to choose better candidates. Our algorithm demonstrates its ability to exhibit cluster structures clearly in relatively compact layout areas without any prior knowledge. We developed Windows software to implement the algorithm for CADLIVE. AVAILABILITY: All materials can be freely downloaded from http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/ SUPPLEMENTARY INFORMATION: http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/  相似文献   

11.
A bioinformatics method was developed to identify the protein surface around the functional site and to estimate the biochemical function, using a newly constructed molecular surface database named the eF-site (electrostatic surface of Functional site. Molecular surfaces of protein molecules were computed based on the atom coordinates, and the eF-site database was prepared by adding the physical properties on the constructed molecular surfaces. The electrostatic potential on each molecular surface was individually calculated solving the Poisson–Boltzmann equation numerically for the precise continuum model, and the hydrophobicity information of each residue was also included. The eF-site database is accessed by the internet (http://pi.protein.osaka-u.ac.jp/eF-site/). We have prepared four different databases, eF-site/antibody, eF-site/prosite, eF-site/P-site, and eF-site/ActiveSite, corresponding to the antigen binding sites of antibodies with the same orientations, the molecular surfaces for the individual motifs in PROSITE database, the phosphate binding sites, and the active site surfaces for the representatives of the individual protein family, respectively. An algorithm using the clique detection method as an applied graph theory was developed to search of the eF-site database, so as to recognize and discriminate the characteristic molecular surfaces of the proteins. The method identifies the active site having the similar function to those of the known proteins.  相似文献   

12.
Song J  Tan H  Wang M  Webb GI  Akutsu T 《PloS one》2012,7(2):e30361
Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the C(α)-N bond (Phi) and the C(α)-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/.  相似文献   

13.
Ebina T  Toh H  Kuroda Y 《Biopolymers》2009,92(1):1-8
The prediction of structural domains in novel protein sequences is becoming of practical importance. One important area of application is the development of computer-aided techniques for identifying, at a low cost, novel protein domain targets for large-scale functional and structural proteomics. Here, we report a loop-length-dependent support vector machine (SVM) prediction of domain linkers, which are loops separating two structural domains. (DLP-SVM is freely available at: http://www.tuat.ac.jp/ approximately domserv/cgi-bin/DLP-SVM.cgi.) We constructed three loop-length-dependent SVM predictors of domain linkers (SVM-All, SVM-Long and SVM-Short), and also built SVM-Joint, which combines the results of SVM-Short and SVM-Long into a single consolidated prediction. The performances of SVM-Joint were, in most aspects, the highest, with a sensitivity of 59.7% and a specificity of 43.6%, which indicated that the specificity and the sensitivity were improved by over 2 and 3% respectively, when loop-length-dependent characteristics were taken into account. Furthermore, the sensitivity and specificity of SVM-Joint were, respectively, 37.6 and 17.4% higher than those of a random guess, and also superior to those of previously reported domain linker predictors. These results indicate that SVMs can be used to predict domain linkers, and that loop-length-dependent characteristics are useful for improving SVM prediction performances.  相似文献   

14.
Leucine‐rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein–protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large‐scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine‐rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/ . Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
TMPDB is a database of experimentally-characterized transmembrane (TM) topologies. TMPDB release 6.2 contains a total of 302 TM protein sequences, in which 276 are alpha-helical sequences, 17 beta-stranded, and 9 alpha-helical sequences with short pore-forming helices buried in the membrane. The TM topologies in TMPDB were determined experimentally by means of X-ray crystallography, NMR, gene fusion technique, substituted cysteine accessibility method, N-linked glycosylation experiment and other biochemical methods. TMPDB would be useful as a test and/or training dataset in improving the proposed TM topology prediction methods or developing novel methods with higher performance, and as a guide for both the bioinformaticians and biologists to better understand TM proteins. TMPDB and its subsets are freely available at the following web site: http://bioinfo.si.hirosaki-u.ac.jp/~TMPDB/.  相似文献   

16.
17.
MOTIVATION: Locating protein-coding exons (CDSs) on a eukaryotic genomic DNA sequence is the initial and an essential step in predicting the functions of the genes embedded in that part of the genome. Accurate prediction of CDSs may be achieved by directly matching the DNA sequence with a known protein sequence or profile of a homologous family member(s). RESULTS: A new convention for encoding a DNA sequence into a series of 23 possible letters (translated codon or tron code) was devised to improve this type of analysis. Using this convention, a dynamic programming algorithm was developed to align a DNA sequence and a protein sequence or profile so that the spliced and translated sequence optimally matches the reference the same as the standard protein sequence alignment allowing for long gaps. The objective function also takes account of frameshift errors, coding potentials, and translational initiation, termination and splicing signals. This method was tested on Caenorhabditis elegans genes of known structures. The accuracy of prediction measured in terms of a correlation coefficient (CC) was about 95% at the nucleotide level for the 288 genes tested, and 97. 0% for the 170 genes whose product and closest homologue share more than 30% identical amino acids. We also propose a strategy to improve the accuracy of prediction for a set of paralogous genes by means of iterative gene prediction and reconstruction of the reference profile derived from the predicted sequences. AVAILABILITY: The source codes for the program 'aln' written in ANSI-C and the test data will be available via anonymous FTP at ftp.genome.ad.jp/pub/genomenet/saitama-cc. CONTACT: gotoh@cancer-c.pref.saitama.jp  相似文献   

18.
19.
M Wang  XM Zhao  K Takemoto  H Xu  Y Li  T Akutsu  J Song 《PloS one》2012,7(8):e43847
Single amino acid variants (SAVs) are the most abundant form of known genetic variations associated with human disease. Successful prediction of the functional impact of SAVs from sequences can thus lead to an improved understanding of the underlying mechanisms of why a SAV may be associated with certain disease. In this work, we constructed a high-quality structural dataset that contained 679 high-quality protein structures with 2,048 SAVs by collecting the human genetic variant data from multiple resources and dividing them into two categories, i.e., disease-associated and neutral variants. We built a two-stage random forest (RF) model, termed as FunSAV, to predict the functional effect of SAVs by combining sequence, structure and residue-contact network features with other additional features that were not explored in previous studies. Importantly, a two-step feature selection procedure was proposed to select the most important and informative features that contribute to the prediction of disease association of SAVs. In cross-validation experiments on the benchmark dataset, FunSAV achieved a good prediction performance with the area under the curve (AUC) of 0.882, which is competitive with and in some cases better than other existing tools including SIFT, SNAP, Polyphen2, PANTHER, nsSNPAnalyzer and PhD-SNP. The sourcecodes of FunSAV and the datasets can be downloaded at http://sunflower.kuicr.kyoto-u.ac.jp/sjn/FunSAV.  相似文献   

20.
CONSEL: for assessing the confidence of phylogenetic tree selection.   总被引:10,自引:0,他引:10  
CONSEL is a program to assess the confidence of the tree selection by giving the p-values for the trees. The main thrust of the program is to calculate the p-value of the Approximately Unbiased (AU) test using the multi-scale bootstrap technique. This p-value is less biased than the other conventional p-values such as the Bootstrap Probability (BP), the Kishino-Hasegawa (KH) test, the Shimodaira-Hasegawa (SH) test, and the Weighted Shimodaira-Hasegawa (WSH) test. CONSEL calculates all these p-values from the output of the phylogeny program packages such as Molphy, PAML, and PAUP*. Furthermore, CONSEL is applicable to a wide class of problems where the BPs are available. AVAILABILITY: The programs are written in C language. The source code for Unix and the executable binary for DOS are found at http://www.ism.ac.jp/~shimo/ CONTACT: shimo@ism.ac.jp  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号