首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以C2C12成肌细胞为模型,在分化培养基中诱导C2C12建立体外肌性细胞分化模型.以poly (A)3′-端加尾和实时定量PCR方法研究miR-101a在C2C12细胞分化过程中的表达情况.结果发现,在细胞转入分化培养基进行肌性分化的1-5 d中,miR-101a的表达量逐渐增加,提示miR-101a可能在肌肉发生中发挥调控作用.  相似文献   

2.
Endooligopeptidase A is a putative neuropeptide-metabolizing enzyme. It converts small enkephalin-containing peptides into the corresponding enkephalins and inactivates biopeptides such as bradykinin and neurotensin in vitro. We investigated the presence of endooligopeptidase A in PC12 cells. This cell line was derived from a rat pheochromocytoma tumor and resembles fetal chromaffin cell. Depending on the supplements added to the cell culture, this cell line can be differentiated into mature chromaffin cell or sympathetic neuron-like cell. Endooligopeptidase A activity was measured in soluble cellular extracts using a specific fluorogenic substrate QF-ERP7. The PC12 endooligopeptidase A-like activity shared similar but not identical biochemical properties with rabbit brain endooligopeptidase A. Similarly to rabbit brain endooligopeptidase A, the PC12 endooligopeptidase A-like activity was enhanced by DTT, totally inhibited by DTNB and 1-10 Phenanthroline, partially inhibited by cFP-AAF-pAb, and not affected by PMSF. Furthermore, the PC12 endooligopeptidase A-like activity displayed identical elution profile as rabbit brain endooligopeptidase A in gel filtration and anion-exchange chromatography. In addition, an antiserum raised against rabbit brain endooligopeptidase A cross-reacted with a 71 kDa component from PC12 cell extracts in Western blotting and was also able to partially neutralize the PC12 endooligopeptidase A-like activity. Treatment of PC12 cells with basic fibroblast growth factor (bFGF), a neurotrophic factor for this cell line, did not modify the specific activity of this enzyme. However, cAMP analogs decreased the specific activity of the enzyme. These results indicate the presence of an endooligopeptidase A-like activity in PC12 cells which is modulated by cAMP but not by bFGF.  相似文献   

3.
Yue F  Zhang GP  Jin HM 《生理学报》2006,58(2):124-128
本文研究了碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)对小鼠脑微血管内皮细胞(microvascular endothelial cell, MVEC)株bEnd.3中血管新生相关基因表达谱的改变,并重点从mRNA、蛋白质和细胞水平检测bFGF对血管新生旁观分子环加氧酶-2(cyclooxygenase-2,COX-2)表达的影响。用特异性小鼠血管新生基因芯片高通量检测bEnd.3细胞基因谱表达的改变,分析促血管新生基因及抑制血管新生的基因表达谱的变化;用RT—PCR、Western blot、免疫细胞化学等方法分别从mRNA、蛋白质和细胞水平检测COX-2表达变化及细胞内的定位。结果发现用10ng/ml的bFGF刺激bEnd.3细胞2h后多种促血管新生基因表达明显上调,如Adamtsl、MMP-9、Ang-1、PDGFB、G—CSF、FGFl6、IGF-1等分别上调3、8、120、5.2、4.5、1.7、2.7倍。与此同时,多种抑制血管新生的基因表达相应下调,如TSP-3、TIMP-2、TGFβ1等表达分别下调3.4、1.5和3.5倍。RT-PCR和Western blot的结果证实,bFGF可以上调COX-2mRNA的表达和蛋白质的合成。免疫组化的结果表明,COX-2主要分布在胞浆。以上结果提示:bFGF具有上调促血管新生基因表达,下调抑制血管新生基因表达的作用,两者协同作用,促进血管新生。同时bFGF还可以明显促进血管新生旁观分子COX-2mRNA的表达和蛋白质的合成。本文讨论了bFGF引起MVEC内COX-2表达上调的意义。  相似文献   

4.
Summary To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Cells were studied in Passages 2 to 8. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue. Supported in part by grant DK 31063 from the National Institutes of Health, Bethesda, MD.  相似文献   

5.
目的:研究吸入糖皮质激素对大鼠肺纤维化模型的干预作用及可能的机制。方法:雌性Wistar大鼠40只,体重180~250g,按照随机数字表法将大鼠随机分为4组(n=10):①对照组(C组);②模型组(M组);③布地奈德组(B组);④地塞米松组(D组)。M组、B组、D组给大鼠气管内吸入博莱霉素(5mg/kgbw,8mg)复制肺纤维化模型,C组气管内吸入同等剂量的生理盐水作对照,B组于次日给予雾化吸入等效剂量布地奈德,D组于次日腹腔内注射地塞米松。上述各组均于注药后第1、4周各宰杀5只。通过苏木素-伊红染色观察肺泡炎、Masson胶原染色观察肺纤维化、用免疫组化及酶联免疫吸附测定(ELISA)法检测bFGF蛋白在大鼠肺组织,血清及肺泡灌洗液(BALF)的表达。结果:1、4周时M组表现为肺泡炎及肺间质炎症,B组、D组肺泡炎及肺纤维化程度较M组减轻。1、4周时血清、肺组织、BALF中M组的bFGF表达高于C组(P0.01),B、D组低于M组(P0.01)。结论:吸入糖皮质激素可减轻博莱霉素诱导的肺纤维化,其抗纤维化作用的机制与抑制bFGF表达有关。  相似文献   

6.
Recent studies have established specific cellular functions for different bioactive sphingolipids in skeletal muscle cells. Ceramide 1-phosphate (C1P) is an important bioactive sphingolipid that has been involved in cell growth and survival. However its possible role in the regulation of muscle cell homeostasis has not been so far investigated. In this study, we show that C1P stimulates myoblast proliferation, as determined by measuring the incorporation of tritiated thymidine into DNA, and progression of the myoblasts through the cell cycle. C1P induced phosphorylation of glycogen synthase kinase-3β and the product of retinoblastoma gene, and enhanced cyclin D1 protein levels. The mitogenic action of C1P also involved activation of phosphatidylinositol 3-kinase/Akt, ERK1/2 and the mammalian target of rapamycin. These effects of C1P were independent of interaction with a putative G(i)-coupled C1P receptor as pertussis toxin, which maintains G(i) protein in the inactive form, did not affect C1P-stimulated myoblast proliferation. By contrast, C1P was unable to inhibit serum starvation- or staurosporine-induced apoptosis in the myoblasts, and did not affect myogenic differentiation. Collectively, these results add up to the current knowledge on cell types targeted by C1P, which so far has been mainly confined to fibroblasts and macrophages, and extend on the mechanisms by which C1P exerts its mitogenic effects. Moreover, the biological activities of C1P described in this report establish that this phosphosphingolipid may be a relevant cue in the regulation of skeletal muscle regeneration, and that C1P-metabolizing enzymes might be important targets for developing cellular therapies for treatment of skeletal muscle degenerative diseases, or tissue injury.  相似文献   

7.
To examine whether basic fibroblast growth factor (bFGF) administered to the heart by perfusion can improve cardiac resistance to injury we employed an isolated rat heart model of ischemia-reperfusion injury and determined the extent of functional recovery in bFGF-treated and control hearts. Global ischemia was simulated by interruption of flow for 60 min. Recovery of developed force of contraction (DF), recorded after reestablishment of flow for 30 min, reached 63.8±1.5% and 96.5±3.5% of preischemic levels in control and bFGF-treated hearts (10 g/heart), respectively, indicating that bFGF induced significantly improved recovery of mechanical function. Recoveries of the rates of contraction or relaxation were also significantly improved in bFGF-treated hearts. Extent of myocardial injury, assessed by determination of phosphocreatine kinase in the effluent, was reduced as a result of bFGF treatment. As a first step towards understanding the mechanism and direct cellular target(s) of bFGF-induced cardioprotection, we investigated its fate after perfusion. Perfusion of 10 g bFGF/heart resulted in a 4-fold increase in bFGF associated with the heart compared to control levels, as estimated by biochemical fractionation and immunoblotting. Immunofluorescent staining of the bFGF-perfused hearts revealed intense anti-bFGF staining in association with blood vessels as well as the periphery of cardiomyocytes, suggesting that the latter may be a target for direct bFGF action. In conclusion, our findings of bFGF-induced increases in cardiac resistance to, and improved functional recovery from, ischemia-reperfusion injury indicate that bFGF may have clinical applications in the treatment of ischemic heart disease.  相似文献   

8.
A murine monoclonal antibody 3H3 recognizes the basic fibroblast growth factor (FGF) and inhibits the growth of human glioblastoma cells both in vitro and in vivo. We studied the potential of a scintigraphic technique using the 3H3 antibody to detect tumors that produce basic FGF.125I- and111In-labeled 3H3 bound to U87MG human glioblastoma cells in vitro. U87MG cells were inoculated subcutaneously into nude mice. After development of the tumor, radiolabeled 3H3 was injected into the subcutaneous space surrounding the tumor. A high level of radioactivity from 3H3 was retained at the tumor, whereas an irrelevant antibody cleared rapidly from the injected site. Radiolabeled 3H3 was not retained in tumors that did not produce basic FGF. Scintigraphic detection of tumors expressing basic FGF would be valuable for the therapeutic application of the antibody.  相似文献   

9.
C2C12 is a myoblast cell line which is used to studydifferentiation into multinucleated cells in vitro. Addition of calpain inhibitors, calpeptin orE-64d, to the culture medium prevented the myoblasticfusion of C2C12 cells. Immunoblot studies usingaffinity-purified antibody, revealed that the expressedlevels of mouse calpastatin remained unaltered duringC2C12 cell fusion. The detected calpastatin migratedas a protein of 130 kDa on SDS-polyacrylamide gelelectrophoresis. The estimated molecular mass wassomewhat greater than that in mouse liver anderythrocytes, and much greater than that reported inrat myoblasts. The 130 kDa isoform may contain anadditional N-terminal region designated XL domainfound in bovine calpastatin.  相似文献   

10.
11.
By an expression cloning method using Fas-transgenic Balb3T3 cells, we tried to obtain inhibitory genes against Fas-mediated apoptosis and identified proto-oncogene c-K-ras. Transient expression of K-Ras mutants revealed that oncogenic mutant K-Ras (RasV12) strongly inhibited, whereas dominant-inhibitory mutant K-Ras (RasN17) enhanced, Fas-mediated apoptosis by inhibiting Fas-triggered activation of caspases without affecting an expression level of Fas. Among the target molecules of Ras, including Raf (mitogen-activated protein kinase kinase kinase [MAPKKK]), phosphatidylinositol 3 (PI-3) kinase, and Ral guanine nucleotide exchange factor (RalGDS), only the constitutively active form of Raf (Raf-CAAX) could inhibit Fas-mediated apoptosis. In addition, the constitutively active form of MAPKK (SDSE-MAPKK) suppressed Fas-mediated apoptosis, and MKP-1, a phosphatase specific for classical MAPK, canceled the protective activity of oncogenic K-Ras (K-RasV12), Raf-CAAX, and SDSE-MAPKK. Furthermore, physiological activation of Ras by basic fibroblast growth factor (bFGF) protected Fas-transgenic Balb3T3 cells from Fas-mediated apoptosis. bFGF protection was also dependent on the activation of the MAPK pathway through Ras. All the results indicate that the activation of MAPK through Ras inhibits Fas-mediated apoptosis in Balb3T3 cells, which may play a role in oncogenesis.  相似文献   

12.
It is well known that growth hormone (GH)-induced IGF-1 signaling plays a dominant role in postnatal muscle growth. Our previous studies have identified a growth factor, progranulin (PGRN), that is co-induced with IGF-1 upon GH administration. This result prompted us to explore the function of PGRN and its association with IGF-1. In the present study, we demonstrated that, similar to IGF-1, PGRN can promote C2C12 myotube hypertrophy via the PI(3)K/Akt/mTOR pathway. Moreover, PGRN can rescue the muscle atrophy phenotypes in C2C12 myotube when IGF-1 signaling is blocked. This result shows that PGRN can substitute for IGF-1 signaling in the regulation of muscle growth. Our findings provide new insights into IGF-1-modulated complicated networks that regulate muscle growth.  相似文献   

13.
Stretch activation of GTP-binding proteins in C2C12 myoblasts   总被引:1,自引:0,他引:1  
Mechanical stimulation has been proposed as a fundamental determinant of muscle physiology. The mechanotransduction of strain and strain rate in C2C12 myoblasts were investigated utilizing a radiolabeled GTP analogue to detect stretch-induced GTP-binding protein activation. Cyclic uniaxial strains of 10% and 20% at a strain rate of 20% s(-1) rapidly (within 1 min) activated a 25-kDa GTPase (183 +/- 17% and 186 +/- 19%, respectively), while 2% strain failed to elicit a response (109 +/- 11%) relative to controls. One, five, and sixty cycles of 10% strain elicited 187 +/- 20%, 183 +/- 17%, and 276 +/- 38% increases in activation. A single 10% stretch at 20% s(-1), but not 0.3% s(-1), resulted in activation. Insulin activated the same 25-kDa band in a dose-dependent manner. Western blot analysis revealed a panel of GTP-binding proteins in C2C12 myoblasts, and tentatively identified the 25-kDa GTPase as rab5. In separate experiments, a 40-kDa protein tentatively identified as Galpha(i) was activated (240 +/- 16%) by 10% strain at 1 Hz for 15 min. These results demonstrate the rapid activation of GTP-binding proteins by mechanical strain in myoblasts in both a strain magnitude- and strain rate-dependent manner.  相似文献   

14.
15.
16.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11, 5-HT2R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2R-mediated FGFR2 transactivation in C6 cells.  相似文献   

17.
18.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Basic fibroblast growth factor (bFGF), which is highly expressed in developing tissues and malignant cells, regulates cell growth, differentiation, and migration. Its expression is essential for the progression and metastasis of HCC. This study aims to investigate the effects of bFGF on the expression of angiogenin, another growth factor, which plays an important role in tumor angiogenesis, and on cell proliferation in H7402 human hepatoma cells. The bFGF sense cDNA or antisense cDNA was stably transfected into H7402 cells. Genomic DNA PCR analysis demonstrated that human bFGF sense cDNA or antisense cDNA was inserted into the genome. Furthermore, the expression of bFGF and angiogenin was examined by RT-PCR and Western blot assays. MTT and colony formation assays were employed to determine cell proliferation. Stable bFGF over-expressing and under-expressing transfectants were successfully established. Expression of angiogenin was decreased in the over-expressing bFGF cells (sense transfectants) and was increased in the under-expressing bFGF cells (antisense transfectants). Cell proliferation increased in the bFGF sense transfectants and decreased in the bFGF antisense transfectants. These results demonstrated that the endogenous bFGF may not only negatively regulate the angiogenin expression but also contribute to the overall cell proliferation in H7402 human hepatoma cells. This study may be helpful in finding a potential therapeutic approach to HCC.  相似文献   

19.

OBJECTIVE:

The Objective of this study was to identify the association of mutation of fibroblast growth factor receptor 1 (FGFR1), FGFR2 genes with syndromic as well as non-syndromic craniosynostosis in Indian population.

MATERIALS AND METHODS:

Retrospective analysis of our records from January 2008 to December 2012 was done. A total of 41 cases satisfying the inclusion criteria and 51 controls were taken for the study. A total volume of 3 ml blood from the patient as well as parents was taken. Deoxyribonucleic acid extracted using phenol chloroform extraction method followed by polymerase chain reaction-restriction fragment length polymorphism method.

RESULTS:

There were 33 (80.4%) non-syndromic cases of craniosynostosis while 8 (19.5%) were syndromic. Out of these 8 syndromic cases, 4 were Apert syndrome, 3 were Crouzon syndrome and 1 Pfeiffer syndrome. Phenotypically the most common non-syndromic craniosynostosis was scaphocephaly (19, 57.7%) followed by plagiocephaly in (14, 42.3%). FGFR1 mutation (Pro252Arg) was seen in 1 (2.4%) case of non-syndromic craniosynostosis while no association was noted either with FGFR1 or with FGFR2 mutation in syndromic cases. None of the control group showed any mutation.

CONCLUSION:

Our study proposed that FGFR1, FGFR2 mutation, which confers predisposition to craniosynostosis does not exist in Indian population when compared to the western world.  相似文献   

20.
In this study, the internalization mechanism of basic fibroblast growth factor (bFGF) at the blood-brain barrier (BBB) was investigated using a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4 cells) as an in vitro model of the BBB and the corresponding receptor was identified using immunohistochemical analysis. The heparin-resistant binding of [125I]bFGF to TM-BBB4 cells was found to be time-, temperature-, osmolarity- and concentration-dependent. Kinetic analysis of the cell-surface binding of [125I]bFGF to TM-BBB4 cells revealed saturable binding with a half-saturation constant of 76 +/- 24 nm and a maximal binding capacity of 183 +/- 17 pmol/mg protein. The heparin-resistant binding of [125I]bFGF to TM-BBB4 was significantly inhibited by a cationic polypeptide poly-L-lysine (300 micro m), and compounds which contain a sulfate moiety, e.g. heparin and chondroitin sulfate-B (each 10 micro g/mL). Moreover, the heparin-resistant binding of [125I]bFGF in TM-BBB4 cells was significantly reduced by 50% following treatment with sodium chlorate, suggesting the loss of perlecan (a core protein of heparan sulfate proteoglycan, HSPG) from the extracellular matrix of the cells. This type of binding is consistent with the involvement HSPG-mediated endocytosis. RT-PCR analysis revealed that HSPG mRNA and FGFR1 and FGFR2 (tyrosine-kinase receptors for bFGF) mRNA are expressed in TM-BBB4 cells. Moreover, immunohistochemical analysis demonstrated that perlecan is expressed on the abluminal membrane of the mouse brain capillary. These results suggest that bFGF is internalized via HSPG, which is expressed on the abluminal membrane of the BBB. HSPG at the BBB may play a role in maintaining the BBB function due to acceptance of the bFGF secreted from astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号