首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary With a view to examine the effect of pre-sowing exposure of seeds to gamma radiation (3000 r) on the drought resistance behaviour of barley plants (Hordeum vulgare L., Var. K12), a pot-culture experiment was conducted at a glasshouse attached to the Department of Plant Physiology. The plants were subjected to wilting treatments at tillering stage and were maintained so for ten days. Subsequently, observations on survival capacity, growth behaviour and physiological changes were made during the wilting period. The data obtained were subjected to statistical analysis. Reduction in soil moisture causes a set-back in the physiological status of barley plants and thereby inhibits the crop growth. Presowing exposure of seeds to gamma-radiation induced drought tolerance in barley plants. It not only improved the growth behaviour but also maintained an active metabolism in plants even under wilting condition. Although the investigation is of preliminary nature, but it certainly offers newer scope of research towards useful utilization of gamma radiation in relation to drought tolerance in crops. Reader in Plant Physiology.  相似文献   

2.
In this study, we analysed morphological, anatomical and physiological effects of polyploidisation in Spathiphyllum wallisii in order to evaluate possible interesting advantages of polyploids for ornamental breeding. Stomatal density was negatively correlated with increased ploidy level. Stomatal size increased in polyploids. Tetraploid Spathiphyllum plants had more ovate and thicker leaves. The inflorescence of tetraploids had a more ovate and thicker spathum, a more cylindrical spadix and a thicker but shorter flower stalk. Biomass production of the tetraploids was reduced, as expressed by lower total dry weights, and tetraploids produced fewer shoots and leaves compared with their diploid progenitors. Furthermore, tetraploid Spathiphyllum plants were more resistant to drought stress compared with diploid plants. After 15 days of drought stress, diploids showed symptoms of wilting, while the tetraploids showed almost no symptoms. Further, measurements of stomatal resistance, leaf water potential, relative water content and proline content indicated that the tetraploid genotypes were more resistant to drought stress compared with the diploids.  相似文献   

3.
Effect of Potassium on Proline Accumulation in Maize during Wilting   总被引:1,自引:0,他引:1  
Leaf discs from maize (Zea mays) grown at high as well as low level of potassium, were treated with different concentrations of KC1 for 2 h in light before exposing to wilting conditions. An enhanced accumulation of free proline effected by wilting was observed in potassium treated discs. Although proline accumulation was much less in leaf discs exposed to short-term severe wilting conditions than in those exposed to long-term mild wilting conditions, the effect of potassium was still evident. Under long-term mild wilting conditions, the enhanced effect was greater in leaf discs from plants grown at high level of potassium than in those from plants grown at low levels of potassium. Treatment with NaCl instead of KC1 did not lead to extra accumulation of proline.  相似文献   

4.
Coronatine Alleviates Water Deficiency Stress on Winter Wheat Seedlings   总被引:1,自引:0,他引:1  
With the aim to determine whether coronatine(COR) alleviates drought stress on wheat,two winter wheat(Triticum aestivum L.) cultivars,ChangWu134(drought-tolerant) and Shan253(drought-sensitive) were studied under hydroponic conditions.Seedlings at the three-leaf stage were cultured in a Hoagland solution containing COR at 0.1 μM for 24 h,and then exposed to 20% polyethylene glycol 6000(PEG6000).Under simulated drought(SD),COR increased the dry weight of shoots and roots of the two cultivars significantly;the root/shoot ratio also increased by 30% for Shan253 and 40% for ChangWu134.Both cultivars treated with COR under SD(0.1COR+PEG) maintained significantly higher relative water content,photosynthesis,transpiration,intercellular concentration of CO2 and stomatal conductance in leaves than those not treated with PEG.Under drought,COR significantly decreased the relative conductivity and malondialdehyde production,and the loss of 1,1-diphenyl-2-picrylhydrazyl scavenging activity in leaves was significantly alleviated in COR-treated plants.The activity of peroxidase,catalase,glutathione reductase and ascorbate peroxidase were adversely affected by drought.Leaves of plants treated with COR under drought produced less abscisic acid(ABA) than those not treated.Thus,COR might alleviate drought effects on wheat by reducing active oxygen species production,activating antioxidant enzymes and changing the ABA level.  相似文献   

5.
应用植物生长调节剂能显著提高作物的耐旱性,从而提高干旱条件下作物的产量(余叔文等 1978,王保民等 1980,Fletcher等 1984,1985)。多效唑(multieffects triazole;MET)是我国80年代生产的一种植物生长延缓剂,其化学名为(2RS,3RS)-1-(4-氯苯基)-4,4-二甲基-2-(1H-1,2,4-三唑-1-基)戊醇-3,它能显著延缓稻苗生长、促进分蘖、防止稻苗移栽后败苗(王熹等 1988a,b),提高  相似文献   

6.
Tobacco plants ( Nicotiana tabacum L., var. Badischer Burley) were treated with chemicals (sprays and soil drenches) known to affect sex expression in other species. Their effect was tested on sex balance, pollen sterility, embryogenic pollen grain (P-grain) formation in situ, and on pollen plant formation in anther and pollen cultures after anther preculture. Napthalene acetic acid (NAA) increased the length of pistils and stamens and shifted sex balance towards femaleness when the plants were raised in long or short days at 24 or 15°C. In parallel, pollen sterility, P-grain frequency in situ and pollen plant production from anther and pollen cultures were increased by NAA. Alar 85 redueed the length of pistils and stamens and shifted sex balance towards femaleness when the plants were raised in long days at 24°C, but shifted it towards maleness in short days and/or at 15°C. In parallel, pollen sterility, P-grain frequency in situ, and pollen plant production in vitro were increased when plants in long days at 24°C were treated with Alar 85, but decreased when plants in short days and/or at 15°C were treated. Ethrel, Cycocel, and GA3 applied in a similar manner, were ineffective. Water sprays and nitrogen starvation shifted sex balance towards femaleness in long days at 15°C and increased pollen sterility, P-grain frequency in situ and pollen plant production in vitro. At 24°C, water sprays and nitrogen starvation had no effect.  相似文献   

7.
Field and lysimeter experiments were conducted in 2002 to investigate the effects of an antigibberellin growth regulator (Moddus, active ingredient trinexapac‐ethyl, Syngenta Crop Protection UK Ltd, Whittlesford, Cambridge, UK) and an auxin‐stimulating (Route, active ingredient zinc ammonium acetate, De Sangosse Ltd, Swaffham Bulbeck, Cambridge, UK) growth promoter on root growth, soil water extraction and the drought response of spring barley. The effects on root growth and distribution were investigated in the field. The effects on the drought response were studied in 1.2‐m‐deep lysimeters packed with a loamy sand subsoil and sandy loam topsoil. Lysimeters were located under a fixed rain shelter, and drought was imposed by withholding irrigation. In both field and lysimeter experiments, growth regulator/promoters were applied to cv. Optic at early tillering according to the manufacturers’ recommendations. After withholding irrigation from lysimeters at Zadoks growth stage (GS) 21 (37 days after sowing), 50% of the profile available water had been depleted by flag leaf emergence (GS 37/39; 62 days after sowing). Drought significantly reduced stem biomass at ear emergence (GS 59; 78 days after sowing) but not leaf or ear dry weight; this was before there was any significant reduction in leaf water potential or stomatal conductance to water vapour. The reduction in stem biomass may reflect a change in partitioning between shoot and root in response to soil drying. When averaged over growth regulator/promoter treatments, drought reduced grain yield by approximately 1 t ha?1. This was associated with a reduction in both ears per m2 and grains per ear. The mean grain weight was not reduced by drought, in spite of significant reductions in stomatal conductance and canopy lifespan post‐anthesis. Route, and to a lesser extent Moddus, significantly increased abscisic acid accumulation in the stem base of droughted plants, and there was some indication of a possible delay in stomatal closure in Route‐treated plants as the soil moisture deficit developed. However, there was no significant effect on the amount of soil water extracted or grain yield under drought. Similarly, in field experiments, neither Route nor Moddus significantly altered total root length, biomass or distribution. There is little evidence from these experiments or in the literature to support the use of antigibberellin or auxin‐simulating growth regulator/promoters to modify root growth and drought avoidance of spring barley.  相似文献   

8.
Four-month old seedlings of pecan [Carya illinoensis (Wangenh) C. Koch] were either not flooded or flooded for 14 days, then transferred to well-drained conditions for 23 days. Water was withheld from one-half of the trees for 6 days, then trees were rewatered, and water was withheld from all trees. Leaf expansion, leaf dry weight, and the number of new leaves that developed were reduced by flooding, but not trunk or root dry weights. Evapotranspiration rates of flooded trees after transfer to well-drained conditions were initially higher than those of unflooded trees, but decreased to rates of control trees after 12 days. Flooding had no effect on photosynthesis after trees had been transferred to well-drained conditions for 23 days. Drought-stressed trees with leaf water potentials as low as − 1.93 MPa had lower leaf photosynthetic CO2 assimilation rate (A), transpiration (E), and leaf conductance to CO2 (gL) as compared to wellwatered trees. Leaf internal CO2 concentration (ci) was reduced only by the most severe water-stress treatment. Water use rates and relative water content were lower at the permanent wilting point during a second drought stress when trees had been exposed previously to drought stress.  相似文献   

9.
The effects of root colonization by the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith on nutritional, growth, and reproductive attributes of two tropical maize cultivars with different sensitivities to drought were studied. Freshly regenerated seeds of selection cycles 0 (cv. C0, drought-sensitive) and 8 (cv. C8, drought-resistant) of the lowland tropical maize population "Tuxpeño sequía" were used in this greenhouse experiment. Maize plants were subjected to drought stress for 3 weeks following tasselling (75–95 days after sowing) and rewatered for the subsequent 5 weeks until harvest. Mycorrhizal (M+) plants had significantly higher uptake of N, P, K, Mg, Mn, and Zn into grain than non-mycorrhizal (M–) plants under drought conditions. AM inoculation also produced significantly greater shoot masses in C0 and C8 regardless of the drought-stress treatment. In the sensitive cultivar C0, drought stress reduced the shoot mass and grain yield by 23% and 55%, respectively, when roots were not colonized, while the reductions were only 12% and 31%, respectively, with mycorrhizal association. In addition, the emergence of tassels and silks was earlier in M+ plants than in M– plants under drought conditions. Mycorrhizal response was more pronounced under both well-watered and drought conditions in C0 than in the C8 cultivar. The overall results suggest that AM inoculation affects host plant nutritional status and growth and thereby alters the reproductive behaviour of maize under drought conditions.  相似文献   

10.
The aim of this study was to investigate the effects of predicted temperature increases and drought conditions of Mediterranean environments on N2-fixing alfalfa plants. One-month-old plants inoculated with Sinorhizobium meliloti strain 102F78 were grown in growth chambers under different temperature (25/15 or 28/18 °C, day/night) and water availability (control or drought) regimes. Elevated temperature and drought reduced plant dry mass and leaf area, especially when both stresses were combined. The inhibitory effect of elevated temperature on plant growth was a consequence of decreased CO2 and N2 fixation rates. A photosynthetic decrease resulted from the inhibition of rubisco activity, probably associated with a lower activation state. An absence of differences in photosynthesis in relation to water availability suggests that drought decreased plant growth due to its negative effect on leaf area. Rising temperature and drought affected the nitrogen content negatively, although effects differed. Elevated temperature inhibited nodule activity drastically, whereas the inhibitory effect resulting from drought centred on nodule dry mass (DM) production. Plants exposed to a combination of elevated temperature and drought were the most negatively affected.  相似文献   

11.
Functionality of the photosynthetic system under water stress is of major importance in drought tolerance. Oat (Avena sativa L.) doubled haploid (DH) lines obtained by pollination of F 1 oat crosses with maize were used to assess the differences in plant genotypic response to soil drought. The investigations were based on the measurements of gas exchange and chlorophyll a fluorescence kinetics. Drought was applied to 17-day-old seedlings by withholding water for 14 days and subsequent plant recovery. Non-stressed optimally watered plants served as controls. Yield components were determined when plants reached full maturity. It was shown differences among the oat lines with respect to drought stress susceptibility (SI) and stress tolerance index mean productivity and drought susceptibility index. Sensitivity to drought of individual DH lines was significantly different, as demonstrated by the correlation between drought susceptibility index and yield components, such as dry weight (GW) or grain number (GN) of the harvested plants. GW and GN were lower in drought-sensitive genotypes exposed to drought stress compared to those resistant to drought. The principal component analysis allow to separate three groups of lines differing in their sensitivity to drought stress and indicated that tolerance to drought in oat has a common genetic background.  相似文献   

12.
This study aimed to investigate physiological and protein expression alterations of mycorrhizal Pinus massoniana Lamb. inoculated with Lactarius insulsus in response to drought stress. The P. massoniana seedlings were inoculated with L. insulsus (Li group) and ectomycorrhized fungal-free filtrate (control, CK group), respectively. After two and a half years, all the plants were exposed to a simulate drought condition without water for 21 days. The soil relative water content (SRWC), wilting degree (WD) and wilting rate (WR) of the plants were measured and root proteome was analyzed based on two-dimensional gel electrophoresis (2-DE), respectively at four time points as 0, 7, 14 and 21 days during the whole drought period. Finally, the electrospray ionization mass spectrometry (ESI-MS) was used to identify the differentially expressed proteins (DEPs) between Li and CK groups. The SRWC was higher, while WR and WD were lower in Li group, compared with that in CK group. Based on 2-DE and ESI-MS, 22 DEPs were identified between Li and CK groups during drought stress. Among them, four proteins had the annotated information in relevant databases, including 1,4-benzoquinone reductase, PSCHI4, ribosomal protein L16 (RPL16) and AINTEGUMENTA-like (AIL) protein. Mycorrhizal P. massoniana inoculated with L. insulsus achieved an enhanced drought resistance as compared to the non-mycorrhizal, and the altered protein expressions such as 1,4-benzoquinone reductase, PSCHI4, RPL16, and AIL might contribute to the improved resistance under drought stress.  相似文献   

13.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   

14.
华南地区8种常见园林地被植物抗旱性比较研究   总被引:5,自引:0,他引:5  
以华南地区8种常见园林地被植物为研究对象,在温室内设置盆栽控水试验,分组测定各参试植物的永久萎蔫率,叶片失水率、相对含水量、相对电导率、可溶性糖、脯氨酸以及丙二醛含量等生理生化指标,并用隶属函数法对其抗旱性进行综合评价。结果表明:(1)植物的永久萎蔫率和叶片失水率以鹅掌藤、白蝴蝶相对较低,其植株表现出较强的抗旱性。(2)随着持续干旱时间的延长,8种地被植物的叶片相对含水量呈不同程度下降趋势;叶片相对电导率、MDA含量均有不同程度升高;叶片可溶性糖和脯氨酸含量的变化趋势不一。(3)3种木本植物的抗旱性强弱依次为鹅掌藤>红花龙船花>红背桂,5种草本植物依次为水鬼蕉>蚌兰>白蝴蝶>葱兰>大叶红草。研究表明,植物的永久萎蔫率、叶片失水率、相对含水量、相对电导率、丙二醛含量与其实际抗旱性密切相关,可作为评价园林地被植物抗旱性的有效指标。  相似文献   

15.
Diversity of Tropical Tree Seedling Responses to Drought   总被引:1,自引:0,他引:1  
Drought is an important seedling mortality agent in dry and moist tropical forests, and more severe and frequent droughts are predicted in the future. The effect of drought on leaf gas exchange and seedling survival was tested in a dry-down experiment with four tree species from dry and moist forests in Bolivia. Seedlings were droughted and wilting stage and gas exchange were monitored. Drought led to a gradual reduction of photosynthesis and stomatal conductance over time, whereas respiration and photosynthetic water-use efficiency initially increased with drought and then declined. Seedlings gradually went through the different wilting stages, until they eventually died, but the trajectory differed for the four species. The strong relationship between wilting stage and photosynthesis means that simple field observations can provide valuable information on plant physiological performance. Three different drought strategies were identified. Dry forest species Ceiba samauma shed its leaves and survived. The moist forest species Cariniana ianeirensis postponed drought stress by having low rates of transpiration and high water-use efficiency. Dry forest Astronium urundeuva and moist forest Triplaris americana followed an opportunistic strategy; they are early successional species that can quickly grow to maturity but periodic drought can be lethal. Strikingly, dry and moist forest species did not differ clearly in their drought tolerance strategies.  相似文献   

16.
Effects of soil drought on growth and productivity of 16 single cross maize hybrids were investigated under field and greenhouse experiments. The Drought Susceptibility Index (DSI) was evaluated in a three year field experiment by the determination of grain loss in conditions of two soil moisture levels (drought and irrigated) and in a pot experiment by the effects of periodical soil drought on seedling dry matter. In the greenhouse experiment response to drought in maize genotypes was also evaluated by root to shoot dry mater ratio, transpiration productivity index, indexes of kernel germination and index of leaf injury by drought and heat temperature. The obtained values of DSI enabled the ranking of the tested genotypes with respect to their drought tolerance. The values of DSI obtained in the field experiment allow to divide the examined genotypes into three, and in the greenhouse experiment into two groups of drought susceptibility. The correlation coefficients between the DSI of maize hybrids in the field and the greenhouse experiments was high and statistically significant, being equal to 0.876. The ranking of hybrids drought tolerance, identified on the basis of field experiments was generally in agreement with the ranking established on the basis of the greenhouse experiment. In the greenhouse experiment statistically significant coefficients of correlation with DSI values in hybrids were obtained for the ratio of dry matter of overground parts to dry matter of roots, both for control and drought treatments, whereas in the estimation of the transpiration productivity coefficient and total dry matter the correlation coefficients were not statistically significant. In this study several laboratory tests were carried out for the drought tolerance of plants (kernel germination, leaf injury) on 4 drought resistant and 4 drought sensitive maize hybrids. Statistically significant correlation coefficients between DSI and the examined parameter of grain germination and leaf injury were obtained for the determination of promptness index (PI), seedling survival index (SS) and leaf injuries indexes (IDS, ITS) as a result of exposure to 14 days of soil drought, osmotic drought −0.9 MPa and exposure to high temperature 45 ° or 50 °C. The results of laboratory tests show that in maize the genetic variation in the degree of drought tolerance is better manifested under severe conditions of water deficit in the soil.  相似文献   

17.
The present study was conducted to examine the changes in some key metabolites in drought-stressed sunflower plants supplied with glycine betaine externally. Imposition of drought stress at the vegetative or reproductive growth stages decreased the plant dry matter production and increased the accumulation of organic solutes (glycine betaine, proline, soluble proteins, free amino acids and soluble sugars) in two sunflower lines, i.e., Glushan-98 and Suncross. In general, decrease in dry matter production and increase in the endogenous levels of organic solutes, were more pronounced when drought stress applied at the vegetative stage than at the reproductive stage. Glycine betaine applied as a pre-sowing seed treatment was not found to be effective in reducing the negative effects of drought stress in sunflower plants. Foliar application of GB further enhanced the leaf endogenous levels of GB, soluble proteins and total soluble sugars in drought stressed plants without exerting any negative effects on other osmotica. However, this GB-induced increase in endogenous levels of organic solutes was found to be not associated with plant dry matter production under stress conditions.  相似文献   

18.
Maize was grown in two densities, 2–47 or 4–94 plants m-2, and the following treatments imposed: untreated, plants partly defoliated 51 days after sowing, and alternate plants in a row partly defoliated 44 days after sowing. Plants flowered about 82 days after sowing. Leaf area was decreased by 60–64% by defoliation on day 51. Defoliation resulted in decreases in grain yield and grain number of 6–17%, though when alternate plants were defoliated in the higher density there was a substantial decrease in yield and number of grains in defoliated plants, which was largely offset by an increase in adjacent intact plants. When plants were defoliated on day 51 subsequent growth in leaf area was similar to, and that in leaf weight nearly as large as that in untreated plants, while increase in stem weight was substantially less than in untreated plants. By the time of flowering untreated and defoliated plots differed by c. 30% in leaf area. Increments of dry matter after flowering differed by c. 15% between untreated and defoliated plots. The fraction of these increments which entered the grain was c. 90% in both untreated and defoliated plots. When alternate plants in the row were partly defoliated on day 44 their subsequent increase in leaf area was probably 5–16% less than that of the adjacent intact plants. Increments of dry matter after flowering of plots with alternate plants defoliated were 93–95 % of those of untreated plots; leaf efficiency after flowering was slightly greater than in untreated plots. The fraction of the dry matter increment after flowering which entered the grain was c. 88 % in both intact and defoliated plants of the small density, but was 94% in intact plants and 86% in defoliated plants of the large density.  相似文献   

19.
The dedifferentiation of articular chondrocytes during in vitro expansion deteriorates the hyaline cartilage regeneration. Many approaches have been developed to enhance the redifferentiation of chondrocytes. In this study, a new and effective protocol to improve the redifferentiation of porcine chondrocytes in a pellet form was established. Pellets were initially treated in the modified culture media containing ternary mixtures, binary mixtures, or single reagents of sodium citrate (SCi), sodium chloride (SCh), and ethylenediaminetetraacetic acid (EDTA) at varied concentrations during the first 3 days of culture, followed by a normal culture medium until 21 days. Viability, proliferation, cartilaginous gene expression, extracellular matrix formation, and morphology of treated cell pellets were comparatively examined. Chondrocytes exposed to SCi, SCh, and EDTA individually or in combinations of two or three chemicals were non-cytotoxic when the concentration ranges of the chemicals were 1.83–2.75, 5.00–7.50, and 1.00–1.50 mM, respectively. Cells treated with the modified media containing EDTA alone and EDTA-containing mixtures enhanced glycosaminoglycan production as well as upregulated cartilaginous gene expression, despite their low proliferation rates. Overall, when all three reagents were in use, a pronounced synergistic effect on the activations of glycosaminoglycan accumulation and type II collagen production was explicitly observed at most, particularly when cells were cultured in the medium containing SCi, SCh, and EDTA at concentrations of 2.20, 6.00, and 1.20 mM, respectively. With a use of this protocol, the redifferentiation of articular chondrocytes for regeneration of hyaline cartilage for tissue engineering applications could be readily achieved.  相似文献   

20.
Elevated CO2 appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO2, temperature and drought on plant growth and physiology. We grew canola ( Brassica napus cv. 45H72) plants under lower (22/18°C) and higher (28/24°C) temperature regimes in controlled-environment chambers at ambient (370 μmol mol−1) and elevated (740 μmol mol−1) CO2 levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO2 had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO2 assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO2 generally had the opposite effect, and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO2 partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号